{"title":"利用强化学习实验发现决策动态的 HMM。","authors":"Xingche Guo, Donglin Zeng, Yuanjia Wang","doi":"10.1093/biostatistics/kxae033","DOIUrl":null,"url":null,"abstract":"<p><p>Major depressive disorder (MDD), a leading cause of years of life lived with disability, presents challenges in diagnosis and treatment due to its complex and heterogeneous nature. Emerging evidence indicates that reward processing abnormalities may serve as a behavioral marker for MDD. To measure reward processing, patients perform computer-based behavioral tasks that involve making choices or responding to stimulants that are associated with different outcomes, such as gains or losses in the laboratory. Reinforcement learning (RL) models are fitted to extract parameters that measure various aspects of reward processing (e.g. reward sensitivity) to characterize how patients make decisions in behavioral tasks. Recent findings suggest the inadequacy of characterizing reward learning solely based on a single RL model; instead, there may be a switching of decision-making processes between multiple strategies. An important scientific question is how the dynamics of strategies in decision-making affect the reward learning ability of individuals with MDD. Motivated by the probabilistic reward task within the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel RL-HMM (hidden Markov model) framework for analyzing reward-based decision-making. Our model accommodates decision-making strategy switching between two distinct approaches under an HMM: subjects making decisions based on the RL model or opting for random choices. We account for continuous RL state space and allow time-varying transition probabilities in the HMM. We introduce a computationally efficient Expectation-maximization (EM) algorithm for parameter estimation and use a nonparametric bootstrap for inference. Extensive simulation studies validate the finite-sample performance of our method. We apply our approach to the EMBARC study to show that MDD patients are less engaged in RL compared to the healthy controls, and engagement is associated with brain activities in the negative affect circuitry during an emotional conflict task.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HMM for discovering decision-making dynamics using reinforcement learning experiments.\",\"authors\":\"Xingche Guo, Donglin Zeng, Yuanjia Wang\",\"doi\":\"10.1093/biostatistics/kxae033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Major depressive disorder (MDD), a leading cause of years of life lived with disability, presents challenges in diagnosis and treatment due to its complex and heterogeneous nature. Emerging evidence indicates that reward processing abnormalities may serve as a behavioral marker for MDD. To measure reward processing, patients perform computer-based behavioral tasks that involve making choices or responding to stimulants that are associated with different outcomes, such as gains or losses in the laboratory. Reinforcement learning (RL) models are fitted to extract parameters that measure various aspects of reward processing (e.g. reward sensitivity) to characterize how patients make decisions in behavioral tasks. Recent findings suggest the inadequacy of characterizing reward learning solely based on a single RL model; instead, there may be a switching of decision-making processes between multiple strategies. An important scientific question is how the dynamics of strategies in decision-making affect the reward learning ability of individuals with MDD. Motivated by the probabilistic reward task within the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel RL-HMM (hidden Markov model) framework for analyzing reward-based decision-making. Our model accommodates decision-making strategy switching between two distinct approaches under an HMM: subjects making decisions based on the RL model or opting for random choices. We account for continuous RL state space and allow time-varying transition probabilities in the HMM. We introduce a computationally efficient Expectation-maximization (EM) algorithm for parameter estimation and use a nonparametric bootstrap for inference. Extensive simulation studies validate the finite-sample performance of our method. We apply our approach to the EMBARC study to show that MDD patients are less engaged in RL compared to the healthy controls, and engagement is associated with brain activities in the negative affect circuitry during an emotional conflict task.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1093/biostatistics/kxae033\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
HMM for discovering decision-making dynamics using reinforcement learning experiments.
Major depressive disorder (MDD), a leading cause of years of life lived with disability, presents challenges in diagnosis and treatment due to its complex and heterogeneous nature. Emerging evidence indicates that reward processing abnormalities may serve as a behavioral marker for MDD. To measure reward processing, patients perform computer-based behavioral tasks that involve making choices or responding to stimulants that are associated with different outcomes, such as gains or losses in the laboratory. Reinforcement learning (RL) models are fitted to extract parameters that measure various aspects of reward processing (e.g. reward sensitivity) to characterize how patients make decisions in behavioral tasks. Recent findings suggest the inadequacy of characterizing reward learning solely based on a single RL model; instead, there may be a switching of decision-making processes between multiple strategies. An important scientific question is how the dynamics of strategies in decision-making affect the reward learning ability of individuals with MDD. Motivated by the probabilistic reward task within the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study, we propose a novel RL-HMM (hidden Markov model) framework for analyzing reward-based decision-making. Our model accommodates decision-making strategy switching between two distinct approaches under an HMM: subjects making decisions based on the RL model or opting for random choices. We account for continuous RL state space and allow time-varying transition probabilities in the HMM. We introduce a computationally efficient Expectation-maximization (EM) algorithm for parameter estimation and use a nonparametric bootstrap for inference. Extensive simulation studies validate the finite-sample performance of our method. We apply our approach to the EMBARC study to show that MDD patients are less engaged in RL compared to the healthy controls, and engagement is associated with brain activities in the negative affect circuitry during an emotional conflict task.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.