针对取货和送货问题的高效神经协作搜索。

Detian Kong;Yining Ma;Zhiguang Cao;Tianshu Yu;Jianhua Xiao
{"title":"针对取货和送货问题的高效神经协作搜索。","authors":"Detian Kong;Yining Ma;Zhiguang Cao;Tianshu Yu;Jianhua Xiao","doi":"10.1109/TPAMI.2024.3450850","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce Neural Collaborative Search (NCS), a novel learning-based framework for efficiently solving pickup and delivery problems (PDPs). NCS pioneers the collaboration between the latest prevalent neural construction and neural improvement models, establishing a collaborative framework where an improvement model iteratively refines solutions initiated by a construction model. Our NCS collaboratively trains the two models via reinforcement learning with an effective shared-critic mechanism. In addition, the construction model enhances the improvement model with high-quality initial solutions via curriculum learning, while the improvement model accelerates the convergence of the construction model through imitation learning. Besides the new framework design, we also propose the efficient Neural Neighborhood Search (N2S), an efficient improvement model employed within the NCS framework. N2S exploits a tailored Markov decision process formulation and two customized decoders for removing and then reinserting a pair of pickup-delivery nodes, thereby learning a ruin-repair search process for addressing the precedence constraints in PDPs efficiently. To balance the computation cost between encoders and decoders, N2S streamlines the existing encoder design through a light Synthesis Attention mechanism that allows the vanilla self-attention to synthesize various features regarding a route solution. Moreover, a diversity enhancement scheme is further leveraged to ameliorate the performance during the inference of N2S. Our NCS and N2S are both generic, and extensive experiments on two canonical PDP variants show that they can produce state-of-the-art results among existing neural methods. Remarkably, our NCS and N2S could surpass the well-known LKH3 solver especially on the more constrained PDP variant.","PeriodicalId":94034,"journal":{"name":"IEEE transactions on pattern analysis and machine intelligence","volume":"46 12","pages":"11019-11034"},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Neural Collaborative Search for Pickup and Delivery Problems\",\"authors\":\"Detian Kong;Yining Ma;Zhiguang Cao;Tianshu Yu;Jianhua Xiao\",\"doi\":\"10.1109/TPAMI.2024.3450850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we introduce Neural Collaborative Search (NCS), a novel learning-based framework for efficiently solving pickup and delivery problems (PDPs). NCS pioneers the collaboration between the latest prevalent neural construction and neural improvement models, establishing a collaborative framework where an improvement model iteratively refines solutions initiated by a construction model. Our NCS collaboratively trains the two models via reinforcement learning with an effective shared-critic mechanism. In addition, the construction model enhances the improvement model with high-quality initial solutions via curriculum learning, while the improvement model accelerates the convergence of the construction model through imitation learning. Besides the new framework design, we also propose the efficient Neural Neighborhood Search (N2S), an efficient improvement model employed within the NCS framework. N2S exploits a tailored Markov decision process formulation and two customized decoders for removing and then reinserting a pair of pickup-delivery nodes, thereby learning a ruin-repair search process for addressing the precedence constraints in PDPs efficiently. To balance the computation cost between encoders and decoders, N2S streamlines the existing encoder design through a light Synthesis Attention mechanism that allows the vanilla self-attention to synthesize various features regarding a route solution. Moreover, a diversity enhancement scheme is further leveraged to ameliorate the performance during the inference of N2S. Our NCS and N2S are both generic, and extensive experiments on two canonical PDP variants show that they can produce state-of-the-art results among existing neural methods. Remarkably, our NCS and N2S could surpass the well-known LKH3 solver especially on the more constrained PDP variant.\",\"PeriodicalId\":94034,\"journal\":{\"name\":\"IEEE transactions on pattern analysis and machine intelligence\",\"volume\":\"46 12\",\"pages\":\"11019-11034\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE transactions on pattern analysis and machine intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663917/\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE transactions on pattern analysis and machine intelligence","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10663917/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了神经协作搜索(NCS),这是一种基于学习的新型框架,用于高效解决取货和交货问题(PDP)。NCS 首创了最新流行的神经构建模型和神经改进模型之间的协作,建立了一个改进模型迭代完善构建模型启动的解决方案的协作框架。我们的 NCS 通过强化学习和有效的共享批判机制对这两个模型进行协作训练。此外,构建模型通过课程学习为改进模型提供高质量的初始解决方案,而改进模型则通过模仿学习加速构建模型的收敛。除了新的框架设计,我们还提出了高效的神经邻域搜索(Neighborhood Search,N2S),这是一种在 NCS 框架内使用的高效改进模型。N2S 利用定制的马尔可夫决策过程表述和两个定制的解码器来移除和重新插入一对取货-交货节点,从而学习一个毁坏-修复搜索过程,以高效地解决 PDP 中的优先级约束。为了平衡编码器和解码器之间的计算成本,N2S 通过轻合成注意机制简化了现有的编码器设计,该机制允许 vanilla 自我注意合成有关路由解决方案的各种特征。此外,N2S 还进一步利用多样性增强方案来改善推理过程中的性能。我们的 NCS 和 N2S 都是通用的,在两个典型 PDP 变体上的广泛实验表明,在现有的神经方法中,它们能产生最先进的结果。值得注意的是,我们的 NCS 和 N2S 超越了著名的 LKH3 求解器,尤其是在约束性更强的 PDP 变体上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient Neural Collaborative Search for Pickup and Delivery Problems
In this paper, we introduce Neural Collaborative Search (NCS), a novel learning-based framework for efficiently solving pickup and delivery problems (PDPs). NCS pioneers the collaboration between the latest prevalent neural construction and neural improvement models, establishing a collaborative framework where an improvement model iteratively refines solutions initiated by a construction model. Our NCS collaboratively trains the two models via reinforcement learning with an effective shared-critic mechanism. In addition, the construction model enhances the improvement model with high-quality initial solutions via curriculum learning, while the improvement model accelerates the convergence of the construction model through imitation learning. Besides the new framework design, we also propose the efficient Neural Neighborhood Search (N2S), an efficient improvement model employed within the NCS framework. N2S exploits a tailored Markov decision process formulation and two customized decoders for removing and then reinserting a pair of pickup-delivery nodes, thereby learning a ruin-repair search process for addressing the precedence constraints in PDPs efficiently. To balance the computation cost between encoders and decoders, N2S streamlines the existing encoder design through a light Synthesis Attention mechanism that allows the vanilla self-attention to synthesize various features regarding a route solution. Moreover, a diversity enhancement scheme is further leveraged to ameliorate the performance during the inference of N2S. Our NCS and N2S are both generic, and extensive experiments on two canonical PDP variants show that they can produce state-of-the-art results among existing neural methods. Remarkably, our NCS and N2S could surpass the well-known LKH3 solver especially on the more constrained PDP variant.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Language-Inspired Relation Transfer for Few-Shot Class-Incremental Learning. Multi-Modality Multi-Attribute Contrastive Pre-Training for Image Aesthetics Computing. 360SFUDA++: Towards Source-Free UDA for Panoramic Segmentation by Learning Reliable Category Prototypes. Anti-Forgetting Adaptation for Unsupervised Person Re-Identification. Evolved Hierarchical Masking for Self-Supervised Learning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1