利用 EvoDomain 增强基于逻辑的测试:基于搜索的面向领域测试套件生成方法

IF 3.8 2区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Information and Software Technology Pub Date : 2024-08-26 DOI:10.1016/j.infsof.2024.107564
Akram Kalaee, Saeed Parsa, Zahra Mansouri
{"title":"利用 EvoDomain 增强基于逻辑的测试:基于搜索的面向领域测试套件生成方法","authors":"Akram Kalaee,&nbsp;Saeed Parsa,&nbsp;Zahra Mansouri","doi":"10.1016/j.infsof.2024.107564","DOIUrl":null,"url":null,"abstract":"<div><h3>Context</h3><p>Effective software testing requires test adequacy criteria. MC/DC, a widely used logic-based testing criterion, struggles to detect domain errors caused by incorrect arithmetic operations. Domain errors occur when test requirement boundaries shift or tilt, causing unpredictable behavior and system crashes.</p></div><div><h3>Objective</h3><p>To address the inadequacy of MC/DC in detecting domain errors, we present EvoDomain, a search-based testing technique.</p></div><div><h3>Method</h3><p>EvoDomain uses a memetic algorithm combining genetic and hill-climbing algorithms, along with the DBSCAN clustering algorithm to select diversified boundary test data. The memetic algorithm is designed to efficiently enhance the search process for covering boundary test data. We compared EvoDomain with two logic-based testing approaches, a domain-oriented test suite generation approach, and random testing.</p></div><div><h3>Results</h3><p>Evaluations on 30 case studies show EvoDomain increases fault detection by 74.44% over MC/DC and 65.06% over RoRG. Additionally, EvoDomain improves support for different fault types by up to 68.89% for MC/DC and 66.33% for RoRG. Compared to COSMOS, which uses static analysis, EvoDomain improves the convergence effectiveness of identifying feasible subdomains by 32%. It offers high accuracy (0.99-1) and F1-score (0.99-1). EvoDomain finds the subdomains in less than 1/3 the time of Random search.</p></div><div><h3>Conclusion</h3><p>EvoDomain effectively generates domain-oriented test suites, enhancing the accuracy and effectiveness of fault detection.</p></div>","PeriodicalId":54983,"journal":{"name":"Information and Software Technology","volume":"177 ","pages":"Article 107564"},"PeriodicalIF":3.8000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0950584924001691/pdfft?md5=07f3cb29ae612025010607deae6b1c2b&pid=1-s2.0-S0950584924001691-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Enhancing logic-based testing with EvoDomain: A search-based domain-oriented test suite generation approach\",\"authors\":\"Akram Kalaee,&nbsp;Saeed Parsa,&nbsp;Zahra Mansouri\",\"doi\":\"10.1016/j.infsof.2024.107564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Context</h3><p>Effective software testing requires test adequacy criteria. MC/DC, a widely used logic-based testing criterion, struggles to detect domain errors caused by incorrect arithmetic operations. Domain errors occur when test requirement boundaries shift or tilt, causing unpredictable behavior and system crashes.</p></div><div><h3>Objective</h3><p>To address the inadequacy of MC/DC in detecting domain errors, we present EvoDomain, a search-based testing technique.</p></div><div><h3>Method</h3><p>EvoDomain uses a memetic algorithm combining genetic and hill-climbing algorithms, along with the DBSCAN clustering algorithm to select diversified boundary test data. The memetic algorithm is designed to efficiently enhance the search process for covering boundary test data. We compared EvoDomain with two logic-based testing approaches, a domain-oriented test suite generation approach, and random testing.</p></div><div><h3>Results</h3><p>Evaluations on 30 case studies show EvoDomain increases fault detection by 74.44% over MC/DC and 65.06% over RoRG. Additionally, EvoDomain improves support for different fault types by up to 68.89% for MC/DC and 66.33% for RoRG. Compared to COSMOS, which uses static analysis, EvoDomain improves the convergence effectiveness of identifying feasible subdomains by 32%. It offers high accuracy (0.99-1) and F1-score (0.99-1). EvoDomain finds the subdomains in less than 1/3 the time of Random search.</p></div><div><h3>Conclusion</h3><p>EvoDomain effectively generates domain-oriented test suites, enhancing the accuracy and effectiveness of fault detection.</p></div>\",\"PeriodicalId\":54983,\"journal\":{\"name\":\"Information and Software Technology\",\"volume\":\"177 \",\"pages\":\"Article 107564\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0950584924001691/pdfft?md5=07f3cb29ae612025010607deae6b1c2b&pid=1-s2.0-S0950584924001691-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Information and Software Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950584924001691\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Software Technology","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950584924001691","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

背景有效的软件测试需要测试充分性标准。MC/DC 是一种广泛使用的基于逻辑的测试标准,但却难以检测到由不正确的算术运算引起的领域错误。为了解决 MC/DC 在检测域错误方面的不足,我们提出了基于搜索的测试技术 EvoDomain。该记忆算法旨在有效增强边界测试数据的搜索过程。我们将 EvoDomain 与两种基于逻辑的测试方法、一种面向领域的测试套件生成方法和随机测试进行了比较。结果对 30 个案例的评估表明,EvoDomain 比 MC/DC 提高了 74.44% 的故障检测率,比 RoRG 提高了 65.06%。此外,EvoDomain 对不同故障类型的支持能力提高了 68.89%(MC/DC)和 66.33%(RoRG)。与使用静态分析的 COSMOS 相比,EvoDomain 将识别可行子域的收敛效率提高了 32%。它的准确率(0.99-1)和 F1 分数(0.99-1)都很高。EvoDomain 找到子域的时间不到随机搜索的 1/3。结论 EvoDomain 能有效生成面向领域的测试套件,提高故障检测的准确性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing logic-based testing with EvoDomain: A search-based domain-oriented test suite generation approach

Context

Effective software testing requires test adequacy criteria. MC/DC, a widely used logic-based testing criterion, struggles to detect domain errors caused by incorrect arithmetic operations. Domain errors occur when test requirement boundaries shift or tilt, causing unpredictable behavior and system crashes.

Objective

To address the inadequacy of MC/DC in detecting domain errors, we present EvoDomain, a search-based testing technique.

Method

EvoDomain uses a memetic algorithm combining genetic and hill-climbing algorithms, along with the DBSCAN clustering algorithm to select diversified boundary test data. The memetic algorithm is designed to efficiently enhance the search process for covering boundary test data. We compared EvoDomain with two logic-based testing approaches, a domain-oriented test suite generation approach, and random testing.

Results

Evaluations on 30 case studies show EvoDomain increases fault detection by 74.44% over MC/DC and 65.06% over RoRG. Additionally, EvoDomain improves support for different fault types by up to 68.89% for MC/DC and 66.33% for RoRG. Compared to COSMOS, which uses static analysis, EvoDomain improves the convergence effectiveness of identifying feasible subdomains by 32%. It offers high accuracy (0.99-1) and F1-score (0.99-1). EvoDomain finds the subdomains in less than 1/3 the time of Random search.

Conclusion

EvoDomain effectively generates domain-oriented test suites, enhancing the accuracy and effectiveness of fault detection.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Information and Software Technology
Information and Software Technology 工程技术-计算机:软件工程
CiteScore
9.10
自引率
7.70%
发文量
164
审稿时长
9.6 weeks
期刊介绍: Information and Software Technology is the international archival journal focusing on research and experience that contributes to the improvement of software development practices. The journal''s scope includes methods and techniques to better engineer software and manage its development. Articles submitted for review should have a clear component of software engineering or address ways to improve the engineering and management of software development. Areas covered by the journal include: • Software management, quality and metrics, • Software processes, • Software architecture, modelling, specification, design and programming • Functional and non-functional software requirements • Software testing and verification & validation • Empirical studies of all aspects of engineering and managing software development Short Communications is a new section dedicated to short papers addressing new ideas, controversial opinions, "Negative" results and much more. Read the Guide for authors for more information. The journal encourages and welcomes submissions of systematic literature studies (reviews and maps) within the scope of the journal. Information and Software Technology is the premiere outlet for systematic literature studies in software engineering.
期刊最新文献
A software product line approach for developing hybrid software systems Evaluating the understandability and user acceptance of Attack-Defense Trees: Original experiment and replication On the road to interactive LLM-based systematic mapping studies Top-down: A better strategy for incremental covering array generation Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1