{"title":"用于大规模硬件尖峰神经网络的单向和分层片上互连架构","authors":"","doi":"10.1016/j.neucom.2024.128480","DOIUrl":null,"url":null,"abstract":"<div><p>Spiking Neural Networks (SNNs) exhibit the strong capability to address spatiotemporal dynamic problems. Recent research has explored the hardware SNN systems to solve the spatiotemporal problems in real-time. The Network-on-Chip (NoC) is an effective scheme for building large-scale hardware SNNs. However, for the existing NoC-based hardware SNNs, large area overhead and hardware power are consumed by their interconnections, because of complex topologies and router structures. Therefore, in this work a novel Unidirectional and Hierarchical on-Chip Interconnected Architecture (UHCIA) is proposed to address this problem. The proposed UHCIA mainly combines the novel hybrid topology of unidirectional multiple loops and rings, and uses a deflection router technique. Experimental results show that compared to other works, the UHCIA achieves <span><math><mo>∼</mo></math></span>23.6X of area reduction and <span><math><mo>∼</mo></math></span>6.4X of power reduction, with high system throughput and biological real-time computations.</p></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unidirectional and hierarchical on-chip interconnected architecture for large-scale hardware spiking neural networks\",\"authors\":\"\",\"doi\":\"10.1016/j.neucom.2024.128480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Spiking Neural Networks (SNNs) exhibit the strong capability to address spatiotemporal dynamic problems. Recent research has explored the hardware SNN systems to solve the spatiotemporal problems in real-time. The Network-on-Chip (NoC) is an effective scheme for building large-scale hardware SNNs. However, for the existing NoC-based hardware SNNs, large area overhead and hardware power are consumed by their interconnections, because of complex topologies and router structures. Therefore, in this work a novel Unidirectional and Hierarchical on-Chip Interconnected Architecture (UHCIA) is proposed to address this problem. The proposed UHCIA mainly combines the novel hybrid topology of unidirectional multiple loops and rings, and uses a deflection router technique. Experimental results show that compared to other works, the UHCIA achieves <span><math><mo>∼</mo></math></span>23.6X of area reduction and <span><math><mo>∼</mo></math></span>6.4X of power reduction, with high system throughput and biological real-time computations.</p></div>\",\"PeriodicalId\":19268,\"journal\":{\"name\":\"Neurocomputing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neurocomputing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0925231224012517\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231224012517","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Unidirectional and hierarchical on-chip interconnected architecture for large-scale hardware spiking neural networks
Spiking Neural Networks (SNNs) exhibit the strong capability to address spatiotemporal dynamic problems. Recent research has explored the hardware SNN systems to solve the spatiotemporal problems in real-time. The Network-on-Chip (NoC) is an effective scheme for building large-scale hardware SNNs. However, for the existing NoC-based hardware SNNs, large area overhead and hardware power are consumed by their interconnections, because of complex topologies and router structures. Therefore, in this work a novel Unidirectional and Hierarchical on-Chip Interconnected Architecture (UHCIA) is proposed to address this problem. The proposed UHCIA mainly combines the novel hybrid topology of unidirectional multiple loops and rings, and uses a deflection router technique. Experimental results show that compared to other works, the UHCIA achieves 23.6X of area reduction and 6.4X of power reduction, with high system throughput and biological real-time computations.
期刊介绍:
Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.