Kailing Song , Michele Bonnin , Fabio L. Traversa , Fabrizio Bonani
{"title":"设计和优化具有多个电气 DOF 的非线性能量收集器的随机平均数学框架","authors":"Kailing Song , Michele Bonnin , Fabio L. Traversa , Fabrizio Bonani","doi":"10.1016/j.cnsns.2024.108306","DOIUrl":null,"url":null,"abstract":"<div><p>Energy harvesters for mechanical vibrations are electro-mechanical systems designed to capture ambient dispersed kinetic energy, and to convert it into usable electrical power. The random nature of mechanical vibrations, combined with the intrinsic non-linearity of the harvester, implies that long, time domain Monte-Carlo simulations are required to assess the device performance, making the analysis burdensome when a large parameter space must be explored. Therefore a simplified, albeit approximate, semi-analytical analysis technique is of paramount importance. In this work we present a methodology for the analysis and design of nonlinear piezoelectric energy harvesters for random mechanical vibrations. The methodology is based on the combined application of model order reduction, to project the dynamics onto a lower dimensional space, and of stochastic averaging, to calculate the stationary probability density function of the reduced variables. The probability distribution is used to calculate expectations of the most relevant quantities, like output voltage, harvested power and power efficiency. Based on our previous works, we consider an energy harvester with a matching network, interposed between the harvester and the load, that reduces the impedance mismatch between the two stages. The methodology is applied to the optimization of the matching network, allowing to maximize the global harvested power and the conversion efficiency. We show that the proposed methodology gives accurate predictions of the harvester’s performance, and that it can be used to significantly simplify the analysis, design and optimization of the device.</p></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S100757042400491X/pdfft?md5=08a4dd0790ede0f504deb5b430eebd42&pid=1-s2.0-S100757042400491X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"A stochastic averaging mathematical framework for design and optimization of nonlinear energy harvesters with several electrical DOFs\",\"authors\":\"Kailing Song , Michele Bonnin , Fabio L. Traversa , Fabrizio Bonani\",\"doi\":\"10.1016/j.cnsns.2024.108306\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Energy harvesters for mechanical vibrations are electro-mechanical systems designed to capture ambient dispersed kinetic energy, and to convert it into usable electrical power. The random nature of mechanical vibrations, combined with the intrinsic non-linearity of the harvester, implies that long, time domain Monte-Carlo simulations are required to assess the device performance, making the analysis burdensome when a large parameter space must be explored. Therefore a simplified, albeit approximate, semi-analytical analysis technique is of paramount importance. In this work we present a methodology for the analysis and design of nonlinear piezoelectric energy harvesters for random mechanical vibrations. The methodology is based on the combined application of model order reduction, to project the dynamics onto a lower dimensional space, and of stochastic averaging, to calculate the stationary probability density function of the reduced variables. The probability distribution is used to calculate expectations of the most relevant quantities, like output voltage, harvested power and power efficiency. Based on our previous works, we consider an energy harvester with a matching network, interposed between the harvester and the load, that reduces the impedance mismatch between the two stages. The methodology is applied to the optimization of the matching network, allowing to maximize the global harvested power and the conversion efficiency. We show that the proposed methodology gives accurate predictions of the harvester’s performance, and that it can be used to significantly simplify the analysis, design and optimization of the device.</p></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S100757042400491X/pdfft?md5=08a4dd0790ede0f504deb5b430eebd42&pid=1-s2.0-S100757042400491X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100757042400491X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042400491X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A stochastic averaging mathematical framework for design and optimization of nonlinear energy harvesters with several electrical DOFs
Energy harvesters for mechanical vibrations are electro-mechanical systems designed to capture ambient dispersed kinetic energy, and to convert it into usable electrical power. The random nature of mechanical vibrations, combined with the intrinsic non-linearity of the harvester, implies that long, time domain Monte-Carlo simulations are required to assess the device performance, making the analysis burdensome when a large parameter space must be explored. Therefore a simplified, albeit approximate, semi-analytical analysis technique is of paramount importance. In this work we present a methodology for the analysis and design of nonlinear piezoelectric energy harvesters for random mechanical vibrations. The methodology is based on the combined application of model order reduction, to project the dynamics onto a lower dimensional space, and of stochastic averaging, to calculate the stationary probability density function of the reduced variables. The probability distribution is used to calculate expectations of the most relevant quantities, like output voltage, harvested power and power efficiency. Based on our previous works, we consider an energy harvester with a matching network, interposed between the harvester and the load, that reduces the impedance mismatch between the two stages. The methodology is applied to the optimization of the matching network, allowing to maximize the global harvested power and the conversion efficiency. We show that the proposed methodology gives accurate predictions of the harvester’s performance, and that it can be used to significantly simplify the analysis, design and optimization of the device.
期刊介绍:
The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity.
The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged.
Topics of interest:
Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity.
No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.