{"title":"基于时间平滑性和时变相似性的无线传感器网络缺失数据恢复","authors":"Ke Zhang , Jianyong Dai , Xiuwu Yu , Guang Zhang","doi":"10.1016/j.iot.2024.101349","DOIUrl":null,"url":null,"abstract":"<div><p>Wireless Sensor Networks (WSN) play a vital role in the Internet of Things (IoT) and show great potential in monitoring applications. However, due to harsh environmental conditions and unreliable communication links, WSN often encounter partial data loss during data collection, which inevitably affects the quality of service. To address this challenge, researchers have employed matrix completion techniques to recover missing data by exploiting the low-rank features in the data, but its accuracy is not satisfactory. This paper argues that the spatiotemporal characteristics of the data underlie its low-rank nature, enabling a more accurate capture of the intrinsic patterns within the data. Drawing on this insight, we propose a missing data recovery algorithm based on Temporal Smoothness and Time-Varying Similarity (TSTVS). Unlike traditional low-rank methods, the TSTVS algorithm directly utilizes the structural features of data in the spatiotemporal domain to establish a missing data completion model. Subsequently, the model is converted into an unconstrained optimization problem using the penalty function method, and the gradient descent method is applied to solve it, reconstructing the complete data matrix. Finally, simulation experiments were conducted on three real-world monitoring datasets, comparing the TSTVS with three low-rank methods, Efficient Data Collection Approach (EDCA), Matrix factorization with Smoothness constraints (MFS) and Data Recovery Based on Low Rank and Short-Term Stability(DRLRSS). The experimental results indicate that the proposed TSTVS algorithm consistently outperforms the three low-rank based algorithms in terms of recovery accuracy across different datasets and missing rate scenarios.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101349"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Missing data recovery based on temporal smoothness and time-varying similarity for wireless sensor network\",\"authors\":\"Ke Zhang , Jianyong Dai , Xiuwu Yu , Guang Zhang\",\"doi\":\"10.1016/j.iot.2024.101349\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wireless Sensor Networks (WSN) play a vital role in the Internet of Things (IoT) and show great potential in monitoring applications. However, due to harsh environmental conditions and unreliable communication links, WSN often encounter partial data loss during data collection, which inevitably affects the quality of service. To address this challenge, researchers have employed matrix completion techniques to recover missing data by exploiting the low-rank features in the data, but its accuracy is not satisfactory. This paper argues that the spatiotemporal characteristics of the data underlie its low-rank nature, enabling a more accurate capture of the intrinsic patterns within the data. Drawing on this insight, we propose a missing data recovery algorithm based on Temporal Smoothness and Time-Varying Similarity (TSTVS). Unlike traditional low-rank methods, the TSTVS algorithm directly utilizes the structural features of data in the spatiotemporal domain to establish a missing data completion model. Subsequently, the model is converted into an unconstrained optimization problem using the penalty function method, and the gradient descent method is applied to solve it, reconstructing the complete data matrix. Finally, simulation experiments were conducted on three real-world monitoring datasets, comparing the TSTVS with three low-rank methods, Efficient Data Collection Approach (EDCA), Matrix factorization with Smoothness constraints (MFS) and Data Recovery Based on Low Rank and Short-Term Stability(DRLRSS). The experimental results indicate that the proposed TSTVS algorithm consistently outperforms the three low-rank based algorithms in terms of recovery accuracy across different datasets and missing rate scenarios.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"28 \",\"pages\":\"Article 101349\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002907\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002907","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Missing data recovery based on temporal smoothness and time-varying similarity for wireless sensor network
Wireless Sensor Networks (WSN) play a vital role in the Internet of Things (IoT) and show great potential in monitoring applications. However, due to harsh environmental conditions and unreliable communication links, WSN often encounter partial data loss during data collection, which inevitably affects the quality of service. To address this challenge, researchers have employed matrix completion techniques to recover missing data by exploiting the low-rank features in the data, but its accuracy is not satisfactory. This paper argues that the spatiotemporal characteristics of the data underlie its low-rank nature, enabling a more accurate capture of the intrinsic patterns within the data. Drawing on this insight, we propose a missing data recovery algorithm based on Temporal Smoothness and Time-Varying Similarity (TSTVS). Unlike traditional low-rank methods, the TSTVS algorithm directly utilizes the structural features of data in the spatiotemporal domain to establish a missing data completion model. Subsequently, the model is converted into an unconstrained optimization problem using the penalty function method, and the gradient descent method is applied to solve it, reconstructing the complete data matrix. Finally, simulation experiments were conducted on three real-world monitoring datasets, comparing the TSTVS with three low-rank methods, Efficient Data Collection Approach (EDCA), Matrix factorization with Smoothness constraints (MFS) and Data Recovery Based on Low Rank and Short-Term Stability(DRLRSS). The experimental results indicate that the proposed TSTVS algorithm consistently outperforms the three low-rank based algorithms in terms of recovery accuracy across different datasets and missing rate scenarios.
期刊介绍:
Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT.
The journal will place a high priority on timely publication, and provide a home for high quality.
Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.