通过热化为 Daemonic 量子电池充电

IF 5.6 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Quantum Science and Technology Pub Date : 2024-09-03 DOI:10.1088/2058-9565/ad7316
Matias Araya Satriani and Felipe Barra
{"title":"通过热化为 Daemonic 量子电池充电","authors":"Matias Araya Satriani and Felipe Barra","doi":"10.1088/2058-9565/ad7316","DOIUrl":null,"url":null,"abstract":"The reduced state of a small system strongly coupled to a charger in thermal equilibrium may be athermal and used as a small battery once disconnected. By harnessing the battery-charger correlations, the battery’s extractable energy can increase above the ergotropy. We introduce a protocol that uses a quantum system as a memory that measures the charger and leaves the battery intact in its charged state. Using the information gained from the measurement, the daemonic ergotropy of the battery is extracted. Then the battery is reconnected to the charger, thermalizing and charging it. However, the memory should return to its initial standard state to close the thermodynamic cycle. Thus, on the one hand, the work cost of the cycle is the sum of the disconnecting and reconnecting battery-charger work plus the measurement and erasure work. On the other hand, the extracted energy is the daemonic ergotropy of the battery plus the ergotropy of the memory. The ratio of these quantities defines the efficiency of the cycle. The protocol is exemplified by a modified transverse spin 1/2 Ising chain, one spin functioning as the battery and the others as the charger. The memory is another auxiliary spin 1/2. We found pairs of measurement schemes from which we extract the same daemonic ergotropy from the battery, they dissipate the same amount of energy, and one leaves the memory in an active state, the other in a passive state. We study the memory’s ergotropy and the daemonic ergotropy of the battery. We find that with measurements, the efficiency can surpass that of the unmeasured protocol, given conditions on temperature, coupling, and choice of the measurement operators.","PeriodicalId":20821,"journal":{"name":"Quantum Science and Technology","volume":null,"pages":null},"PeriodicalIF":5.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Daemonic quantum battery charged by thermalization\",\"authors\":\"Matias Araya Satriani and Felipe Barra\",\"doi\":\"10.1088/2058-9565/ad7316\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The reduced state of a small system strongly coupled to a charger in thermal equilibrium may be athermal and used as a small battery once disconnected. By harnessing the battery-charger correlations, the battery’s extractable energy can increase above the ergotropy. We introduce a protocol that uses a quantum system as a memory that measures the charger and leaves the battery intact in its charged state. Using the information gained from the measurement, the daemonic ergotropy of the battery is extracted. Then the battery is reconnected to the charger, thermalizing and charging it. However, the memory should return to its initial standard state to close the thermodynamic cycle. Thus, on the one hand, the work cost of the cycle is the sum of the disconnecting and reconnecting battery-charger work plus the measurement and erasure work. On the other hand, the extracted energy is the daemonic ergotropy of the battery plus the ergotropy of the memory. The ratio of these quantities defines the efficiency of the cycle. The protocol is exemplified by a modified transverse spin 1/2 Ising chain, one spin functioning as the battery and the others as the charger. The memory is another auxiliary spin 1/2. We found pairs of measurement schemes from which we extract the same daemonic ergotropy from the battery, they dissipate the same amount of energy, and one leaves the memory in an active state, the other in a passive state. We study the memory’s ergotropy and the daemonic ergotropy of the battery. We find that with measurements, the efficiency can surpass that of the unmeasured protocol, given conditions on temperature, coupling, and choice of the measurement operators.\",\"PeriodicalId\":20821,\"journal\":{\"name\":\"Quantum Science and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Science and Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/2058-9565/ad7316\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Science and Technology","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/2058-9565/ad7316","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在热平衡状态下,与充电器强耦合的小系统的还原状态可能是热的,一旦断开连接,就可用作小型电池。通过利用电池与充电器的相关性,电池的可提取能量可以增加到超过各向异性。我们介绍了一种协议,它使用量子系统作为存储器,测量充电器并使电池保持充电状态。利用从测量中获得的信息,可以提取出电池的代魔熵。然后将电池重新连接到充电器,对其进行热处理和充电。然而,存储器应恢复到初始标准状态,以结束热力学循环。因此,一方面,循环的功耗是电池-充电器断开和重新连接功耗加上测量和擦除功耗的总和。另一方面,提取的能量是电池的 "幂熵 "加上存储器的 "熵"。这些量的比值决定了循环的效率。该协议以改进的横向自旋 1/2 伊辛链为例,其中一个自旋充当电池,其他自旋充当充电器。存储器是另一个辅助自旋 1/2。我们发现了一对测量方案,从中我们可以从电池中提取出相同的自旋各向异性,它们耗散的能量相同,其中一个让存储器处于激活状态,另一个则处于被动状态。我们研究了存储器的各向异性和电池的达观各向异性。我们发现,在温度、耦合和测量算子选择等条件下,有测量的效率可以超过无测量的协议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Daemonic quantum battery charged by thermalization
The reduced state of a small system strongly coupled to a charger in thermal equilibrium may be athermal and used as a small battery once disconnected. By harnessing the battery-charger correlations, the battery’s extractable energy can increase above the ergotropy. We introduce a protocol that uses a quantum system as a memory that measures the charger and leaves the battery intact in its charged state. Using the information gained from the measurement, the daemonic ergotropy of the battery is extracted. Then the battery is reconnected to the charger, thermalizing and charging it. However, the memory should return to its initial standard state to close the thermodynamic cycle. Thus, on the one hand, the work cost of the cycle is the sum of the disconnecting and reconnecting battery-charger work plus the measurement and erasure work. On the other hand, the extracted energy is the daemonic ergotropy of the battery plus the ergotropy of the memory. The ratio of these quantities defines the efficiency of the cycle. The protocol is exemplified by a modified transverse spin 1/2 Ising chain, one spin functioning as the battery and the others as the charger. The memory is another auxiliary spin 1/2. We found pairs of measurement schemes from which we extract the same daemonic ergotropy from the battery, they dissipate the same amount of energy, and one leaves the memory in an active state, the other in a passive state. We study the memory’s ergotropy and the daemonic ergotropy of the battery. We find that with measurements, the efficiency can surpass that of the unmeasured protocol, given conditions on temperature, coupling, and choice of the measurement operators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Quantum Science and Technology
Quantum Science and Technology Materials Science-Materials Science (miscellaneous)
CiteScore
11.20
自引率
3.00%
发文量
133
期刊介绍: Driven by advances in technology and experimental capability, the last decade has seen the emergence of quantum technology: a new praxis for controlling the quantum world. It is now possible to engineer complex, multi-component systems that merge the once distinct fields of quantum optics and condensed matter physics. Quantum Science and Technology is a new multidisciplinary, electronic-only journal, devoted to publishing research of the highest quality and impact covering theoretical and experimental advances in the fundamental science and application of all quantum-enabled technologies.
期刊最新文献
From architectures to applications: a review of neural quantum states OPA tomography of non-Gaussian states of light A linear photonic swap test circuit for quantum kernel estimation Practical twin-field quantum key distribution parameter optimization based on quantum annealing algorithm On the feasibility of detecting quantum delocalization effects on relativistic time dilation in optical clocks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1