蒸发角:减少 DOA 估计中干扰攻击的生成方法

IF 4.6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Wireless Communications Letters Pub Date : 2024-09-03 DOI:10.1109/LWC.2024.3454108
Saiqin Xu;Alessandro Brighente;Mauro Conti;Baixiao Chen;Shuo Wang
{"title":"蒸发角:减少 DOA 估计中干扰攻击的生成方法","authors":"Saiqin Xu;Alessandro Brighente;Mauro Conti;Baixiao Chen;Shuo Wang","doi":"10.1109/LWC.2024.3454108","DOIUrl":null,"url":null,"abstract":"Current Direction of Arrival (DOA) estimation methods are unable to provide reliable estimates when faced with jamming attacks. To address this issue, we propose Direction of Arrival Estimation via Conditional Generative Adversarial Networks (DOA-CGAN), the first generative approach to remove the jamming component from the received signal covariance matrix. In our model, we input the received signal covariance matrix to an unsupervised generator that filters it to generate a matrix that can be deemed legitimate by a supervised discriminator. After training, we leverage the generator as a filter able to remove the jamming component from the received signal covariance matrix and feed its output to classical DOA estimation algorithms. Numerical results demonstrate that our proposed method delivers robust DOA estimation compared with other machine learning methods with a root mean squared error smaller than 0.2°.","PeriodicalId":13343,"journal":{"name":"IEEE Wireless Communications Letters","volume":"13 10","pages":"2922-2926"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaporative Angle: A Generative Approach to Mitigate Jamming Attacks in DOA Estimation\",\"authors\":\"Saiqin Xu;Alessandro Brighente;Mauro Conti;Baixiao Chen;Shuo Wang\",\"doi\":\"10.1109/LWC.2024.3454108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current Direction of Arrival (DOA) estimation methods are unable to provide reliable estimates when faced with jamming attacks. To address this issue, we propose Direction of Arrival Estimation via Conditional Generative Adversarial Networks (DOA-CGAN), the first generative approach to remove the jamming component from the received signal covariance matrix. In our model, we input the received signal covariance matrix to an unsupervised generator that filters it to generate a matrix that can be deemed legitimate by a supervised discriminator. After training, we leverage the generator as a filter able to remove the jamming component from the received signal covariance matrix and feed its output to classical DOA estimation algorithms. Numerical results demonstrate that our proposed method delivers robust DOA estimation compared with other machine learning methods with a root mean squared error smaller than 0.2°.\",\"PeriodicalId\":13343,\"journal\":{\"name\":\"IEEE Wireless Communications Letters\",\"volume\":\"13 10\",\"pages\":\"2922-2926\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Wireless Communications Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10663685/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Wireless Communications Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663685/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

目前的到达方向(DOA)估计方法在面对干扰攻击时无法提供可靠的估计。为解决这一问题,我们提出了通过条件生成对抗网络(DOA-CGAN)进行到达方向估计的方法,这是第一种从接收信号协方差矩阵中去除干扰成分的生成方法。在我们的模型中,我们将接收到的信号协方差矩阵输入一个无监督生成器,生成器会对其进行过滤,生成一个可被有监督判别器视为合法的矩阵。经过训练后,我们将生成器用作滤波器,能够从接收信号协方差矩阵中去除干扰成分,并将其输出输入经典的 DOA 估计算法。数值结果表明,与其他机器学习方法相比,我们提出的方法能提供稳健的 DOA 估计,均方根误差小于 0.2°。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaporative Angle: A Generative Approach to Mitigate Jamming Attacks in DOA Estimation
Current Direction of Arrival (DOA) estimation methods are unable to provide reliable estimates when faced with jamming attacks. To address this issue, we propose Direction of Arrival Estimation via Conditional Generative Adversarial Networks (DOA-CGAN), the first generative approach to remove the jamming component from the received signal covariance matrix. In our model, we input the received signal covariance matrix to an unsupervised generator that filters it to generate a matrix that can be deemed legitimate by a supervised discriminator. After training, we leverage the generator as a filter able to remove the jamming component from the received signal covariance matrix and feed its output to classical DOA estimation algorithms. Numerical results demonstrate that our proposed method delivers robust DOA estimation compared with other machine learning methods with a root mean squared error smaller than 0.2°.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Wireless Communications Letters
IEEE Wireless Communications Letters Engineering-Electrical and Electronic Engineering
CiteScore
12.30
自引率
6.30%
发文量
481
期刊介绍: IEEE Wireless Communications Letters publishes short papers in a rapid publication cycle on advances in the state-of-the-art of wireless communications. Both theoretical contributions (including new techniques, concepts, and analyses) and practical contributions (including system experiments and prototypes, and new applications) are encouraged. This journal focuses on the physical layer and the link layer of wireless communication systems.
期刊最新文献
Feedback Design With VQ-VAE for Robust Precoding in Multi-User FDD Systems Robotic Sensor Network: Achieving Mutual Communication Control Assistance With Fast Cross-Layer Optimization EMR Safety in Multiple Wireless Chargers Powered IoT Networks OFDM-Based In-Band Full-Duplex ISAC Systems Peak Downlink Rate Maximization and Joint Beamforming Optimization for RIS-Aided THz OFDMA UM-MIMO Communications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1