包含波纹空心圆柱体的圆形空腔中自然对流传热的有限元法(FEM)分析

IF 4 3区 工程技术 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS International Journal of Numerical Methods for Heat & Fluid Flow Pub Date : 2024-09-05 DOI:10.1108/hff-04-2024-0292
Abdelhak Daiz, Rachid Hidki, Redouane Fares, Zouhair Charqui
{"title":"包含波纹空心圆柱体的圆形空腔中自然对流传热的有限元法(FEM)分析","authors":"Abdelhak Daiz, Rachid Hidki, Redouane Fares, Zouhair Charqui","doi":"10.1108/hff-04-2024-0292","DOIUrl":null,"url":null,"abstract":"<h3>Purpose</h3>\n<p>The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.</p><!--/ Abstract__block -->\n<h3>Design/methodology/approach</h3>\n<p>Numerical simulations were used to analyze the convection patterns. The inner cylinder, made of a thermally conductive solid material, was heated through its inner surface, while the space between the cylinders was filled with air. The governing equations for velocity, pressure and temperature were solved using a Galerkin finite element method-based solver for partial differential equations.</p><!--/ Abstract__block -->\n<h3>Findings</h3>\n<p>The study explored various parameters affecting the dynamic and thermal structure of the flow, including the Rayleigh number (10<sup>3</sup> ≤ Ra ≤ 10<sup>6</sup>), the number of corrugations of the inner cylinder (3 ≤ <em>N</em> ≤ 18), the thermal conductivity of the hollow cylinder (1 ≤ <em>K</em> ≤ 200) and the angle of inclination of the inner cylinder (0° ≤ <em>φ</em> ≤ 90°). Results indicated a notable sensitivity of flow intensity to changes in the Rayleigh number and the inner cylinder’s inclination angle <em>φ</em>. Particularly, for Ra = 10<sup>6</sup>, the average heat transfer rate increased by 203% with a <em>K</em> ratio increment from 1 to 100 but decreased by 16.3% as the number of corrugations increased from 3 to 18.</p><!--/ Abstract__block -->\n<h3>Originality/value</h3>\n<p>This research contributes to understanding the complex interplay between geometry, thermal properties and flow dynamics in natural convection systems involving cylindrical geometries. The findings offer useful insights for improving the transfer of heat procedures in real-world situations.</p><!--/ Abstract__block -->","PeriodicalId":14263,"journal":{"name":"International Journal of Numerical Methods for Heat & Fluid Flow","volume":"38 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite element method (FEM) analysis of heat transfer by natural convection in a circular cavity containing a corrugated hollow cylinder\",\"authors\":\"Abdelhak Daiz, Rachid Hidki, Redouane Fares, Zouhair Charqui\",\"doi\":\"10.1108/hff-04-2024-0292\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Purpose</h3>\\n<p>The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.</p><!--/ Abstract__block -->\\n<h3>Design/methodology/approach</h3>\\n<p>Numerical simulations were used to analyze the convection patterns. The inner cylinder, made of a thermally conductive solid material, was heated through its inner surface, while the space between the cylinders was filled with air. The governing equations for velocity, pressure and temperature were solved using a Galerkin finite element method-based solver for partial differential equations.</p><!--/ Abstract__block -->\\n<h3>Findings</h3>\\n<p>The study explored various parameters affecting the dynamic and thermal structure of the flow, including the Rayleigh number (10<sup>3</sup> ≤ Ra ≤ 10<sup>6</sup>), the number of corrugations of the inner cylinder (3 ≤ <em>N</em> ≤ 18), the thermal conductivity of the hollow cylinder (1 ≤ <em>K</em> ≤ 200) and the angle of inclination of the inner cylinder (0° ≤ <em>φ</em> ≤ 90°). Results indicated a notable sensitivity of flow intensity to changes in the Rayleigh number and the inner cylinder’s inclination angle <em>φ</em>. Particularly, for Ra = 10<sup>6</sup>, the average heat transfer rate increased by 203% with a <em>K</em> ratio increment from 1 to 100 but decreased by 16.3% as the number of corrugations increased from 3 to 18.</p><!--/ Abstract__block -->\\n<h3>Originality/value</h3>\\n<p>This research contributes to understanding the complex interplay between geometry, thermal properties and flow dynamics in natural convection systems involving cylindrical geometries. The findings offer useful insights for improving the transfer of heat procedures in real-world situations.</p><!--/ Abstract__block -->\",\"PeriodicalId\":14263,\"journal\":{\"name\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Numerical Methods for Heat & Fluid Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1108/hff-04-2024-0292\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Numerical Methods for Heat & Fluid Flow","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1108/hff-04-2024-0292","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

目的 本研究旨在分析冷圆柱体和加热波纹圆柱体之间的温度差所产生的自由对流现象。内圆柱体由导热固体材料制成,通过其内表面加热,而圆柱体之间的空间则充满空气。研究探索了影响流动动态和热结构的各种参数,包括瑞利数(103 ≤ Ra ≤ 106)、内圆柱的波纹数(3 ≤ N ≤ 18)、空心圆柱的导热系数(1 ≤ K ≤ 200)和内圆柱的倾斜角(0° ≤ φ ≤ 90°)。结果表明,流动强度对雷利数和内圆筒倾角 φ 的变化非常敏感。特别是在 Ra = 106 的情况下,当 K 比从 1 增加到 100 时,平均传热率增加了 203%,但当波纹数从 3 增加到 18 时,平均传热率降低了 16.3%。研究结果为改进实际情况下的热量传递程序提供了有益的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Finite element method (FEM) analysis of heat transfer by natural convection in a circular cavity containing a corrugated hollow cylinder

Purpose

The purpose of this study is to analyze the free convection phenomena arising from a temperature disparity between a cold circular cylinder and a heated corrugated cylinder.

Design/methodology/approach

Numerical simulations were used to analyze the convection patterns. The inner cylinder, made of a thermally conductive solid material, was heated through its inner surface, while the space between the cylinders was filled with air. The governing equations for velocity, pressure and temperature were solved using a Galerkin finite element method-based solver for partial differential equations.

Findings

The study explored various parameters affecting the dynamic and thermal structure of the flow, including the Rayleigh number (103 ≤ Ra ≤ 106), the number of corrugations of the inner cylinder (3 ≤ N ≤ 18), the thermal conductivity of the hollow cylinder (1 ≤ K ≤ 200) and the angle of inclination of the inner cylinder (0° ≤ φ ≤ 90°). Results indicated a notable sensitivity of flow intensity to changes in the Rayleigh number and the inner cylinder’s inclination angle φ. Particularly, for Ra = 106, the average heat transfer rate increased by 203% with a K ratio increment from 1 to 100 but decreased by 16.3% as the number of corrugations increased from 3 to 18.

Originality/value

This research contributes to understanding the complex interplay between geometry, thermal properties and flow dynamics in natural convection systems involving cylindrical geometries. The findings offer useful insights for improving the transfer of heat procedures in real-world situations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
9.50
自引率
11.90%
发文量
100
审稿时长
6-12 weeks
期刊介绍: The main objective of this international journal is to provide applied mathematicians, engineers and scientists engaged in computer-aided design and research in computational heat transfer and fluid dynamics, whether in academic institutions of industry, with timely and accessible information on the development, refinement and application of computer-based numerical techniques for solving problems in heat and fluid flow. - See more at: http://emeraldgrouppublishing.com/products/journals/journals.htm?id=hff#sthash.Kf80GRt8.dpuf
期刊最新文献
Thermo-hydraulic performance of air heat exchanger using prepared ternary HNF: a CFD analysis Multiple exact solutions in tri-hybrid nanofluid flow: a study of elastic surface effects Dual solutions of hybrid nanofluid flow past a permeable melting shrinking sheet with higher-order slips, shape factor and viscous dissipation effect Uncertainty analysis of MHD oscillatory flow of ternary nanofluids through a diverging channel: a comparative study of nanofluid composites Twisted-tape inserts of rectangular and triangular sections in turbulent flow of CMC/CuO non-Newtonian nanofluid into an oval tube
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1