自动区分误区分类法

Jan Hückelheim, Harshitha Menon, William Moses, Bruce Christianson, Paul Hovland, Laurent Hascoët
{"title":"自动区分误区分类法","authors":"Jan Hückelheim, Harshitha Menon, William Moses, Bruce Christianson, Paul Hovland, Laurent Hascoët","doi":"10.1002/widm.1555","DOIUrl":null,"url":null,"abstract":"Automatic differentiation is a popular technique for computing derivatives of computer programs. While automatic differentiation has been successfully used in countless engineering, science, and machine learning applications, it can sometimes nevertheless produce surprising results. In this paper, we categorize problematic usages of automatic differentiation, and illustrate each category with examples such as chaos, time‐averages, discretizations, fixed‐point loops, lookup tables, linear solvers, and probabilistic programs, in the hope that readers may more easily avoid or detect such pitfalls. We also review debugging techniques and their effectiveness in these situations.This article is categorized under:<jats:list list-type=\"simple\"> <jats:list-item>Technologies &gt; Machine Learning</jats:list-item> </jats:list>","PeriodicalId":501013,"journal":{"name":"WIREs Data Mining and Knowledge Discovery","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A taxonomy of automatic differentiation pitfalls\",\"authors\":\"Jan Hückelheim, Harshitha Menon, William Moses, Bruce Christianson, Paul Hovland, Laurent Hascoët\",\"doi\":\"10.1002/widm.1555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automatic differentiation is a popular technique for computing derivatives of computer programs. While automatic differentiation has been successfully used in countless engineering, science, and machine learning applications, it can sometimes nevertheless produce surprising results. In this paper, we categorize problematic usages of automatic differentiation, and illustrate each category with examples such as chaos, time‐averages, discretizations, fixed‐point loops, lookup tables, linear solvers, and probabilistic programs, in the hope that readers may more easily avoid or detect such pitfalls. We also review debugging techniques and their effectiveness in these situations.This article is categorized under:<jats:list list-type=\\\"simple\\\"> <jats:list-item>Technologies &gt; Machine Learning</jats:list-item> </jats:list>\",\"PeriodicalId\":501013,\"journal\":{\"name\":\"WIREs Data Mining and Knowledge Discovery\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"WIREs Data Mining and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/widm.1555\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"WIREs Data Mining and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/widm.1555","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动微分是计算计算机程序导数的一种流行技术。虽然自动微分已成功应用于无数工程、科学和机器学习领域,但有时也会产生令人惊讶的结果。在本文中,我们对自动微分的问题用法进行了分类,并通过混沌、时间平均、离散化、定点循环、查找表、线性求解器和概率程序等实例对每个类别进行了说明,希望读者可以更容易地避免或发现这些陷阱。我们还回顾了调试技巧及其在这些情况下的有效性:技术 > 机器学习
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A taxonomy of automatic differentiation pitfalls
Automatic differentiation is a popular technique for computing derivatives of computer programs. While automatic differentiation has been successfully used in countless engineering, science, and machine learning applications, it can sometimes nevertheless produce surprising results. In this paper, we categorize problematic usages of automatic differentiation, and illustrate each category with examples such as chaos, time‐averages, discretizations, fixed‐point loops, lookup tables, linear solvers, and probabilistic programs, in the hope that readers may more easily avoid or detect such pitfalls. We also review debugging techniques and their effectiveness in these situations.This article is categorized under: Technologies > Machine Learning
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trace Encoding Techniques for Multi‐Perspective Process Mining: A Comparative Study Hyper‐Parameter Optimization of Kernel Functions on Multi‐Class Text Categorization: A Comparative Evaluation Dimensionality Reduction for Data Analysis With Quantum Feature Learning Business Analytics in Customer Lifetime Value: An Overview Analysis Knowledge Graph for Solubility Big Data: Construction and Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1