行为分析系统 MCFBM 可以客观推断鸣禽在社会互动过程中的注意力。

IF 4.3 Q1 BIOCHEMICAL RESEARCH METHODS Cell Reports Methods Pub Date : 2024-09-16 Epub Date: 2024-09-03 DOI:10.1016/j.crmeth.2024.100844
Mizuki Fujibayashi, Kentaro Abe
{"title":"行为分析系统 MCFBM 可以客观推断鸣禽在社会互动过程中的注意力。","authors":"Mizuki Fujibayashi, Kentaro Abe","doi":"10.1016/j.crmeth.2024.100844","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding animal behavior is crucial in behavioral neuroscience, aiming to unravel the mechanisms driving these behaviors. A significant milestone in this field is the analysis of behavioral reactions during social interactions. Despite their importance in social learning, the behavioral aspects of these interaction are not well understood in detail due to the lack of appropriate tools. We introduce a high-precision, marker-based motion-capture system for analyzing behavior in songbirds, accurately tracking body location and head direction in multiple freely moving finches during social interaction. Focusing on zebra finches, our analysis revealed variations in eye use based on individuals presented. We also observed behavioral changes during virtual and live presentations and a conditioned-learning paradigm. Additionally, the system effectively analyzed social interactions among mice. This system provides an efficient tool for advanced behavioral analysis in small animals and offers an objective method to infer their focus of attention.</p>","PeriodicalId":29773,"journal":{"name":"Cell Reports Methods","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440064/pdf/","citationCount":"0","resultStr":"{\"title\":\"A behavioral analysis system MCFBM enables objective inference of songbirds' attention during social interactions.\",\"authors\":\"Mizuki Fujibayashi, Kentaro Abe\",\"doi\":\"10.1016/j.crmeth.2024.100844\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding animal behavior is crucial in behavioral neuroscience, aiming to unravel the mechanisms driving these behaviors. A significant milestone in this field is the analysis of behavioral reactions during social interactions. Despite their importance in social learning, the behavioral aspects of these interaction are not well understood in detail due to the lack of appropriate tools. We introduce a high-precision, marker-based motion-capture system for analyzing behavior in songbirds, accurately tracking body location and head direction in multiple freely moving finches during social interaction. Focusing on zebra finches, our analysis revealed variations in eye use based on individuals presented. We also observed behavioral changes during virtual and live presentations and a conditioned-learning paradigm. Additionally, the system effectively analyzed social interactions among mice. This system provides an efficient tool for advanced behavioral analysis in small animals and offers an objective method to infer their focus of attention.</p>\",\"PeriodicalId\":29773,\"journal\":{\"name\":\"Cell Reports Methods\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440064/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Methods\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.crmeth.2024.100844\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Methods","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.crmeth.2024.100844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/3 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

摘要

了解动物行为是行为神经科学的关键,其目的是揭示这些行为的驱动机制。该领域的一个重要里程碑是分析社会互动过程中的行为反应。尽管社交互动在社会学习中非常重要,但由于缺乏适当的工具,人们对这些互动的行为方面还不甚了解。我们介绍了一种用于分析鸣禽行为的高精度、基于标记的运动捕捉系统,该系统可精确跟踪多只自由移动的雀类在社交互动过程中的身体位置和头部方向。我们的分析以斑马雀为重点,揭示了不同个体在用眼方面的差异。我们还观察到在虚拟和现场演示以及条件学习范式中的行为变化。此外,该系统还有效地分析了小鼠之间的社交互动。该系统为小型动物的高级行为分析提供了一种有效的工具,并为推断它们的注意力焦点提供了一种客观的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A behavioral analysis system MCFBM enables objective inference of songbirds' attention during social interactions.

Understanding animal behavior is crucial in behavioral neuroscience, aiming to unravel the mechanisms driving these behaviors. A significant milestone in this field is the analysis of behavioral reactions during social interactions. Despite their importance in social learning, the behavioral aspects of these interaction are not well understood in detail due to the lack of appropriate tools. We introduce a high-precision, marker-based motion-capture system for analyzing behavior in songbirds, accurately tracking body location and head direction in multiple freely moving finches during social interaction. Focusing on zebra finches, our analysis revealed variations in eye use based on individuals presented. We also observed behavioral changes during virtual and live presentations and a conditioned-learning paradigm. Additionally, the system effectively analyzed social interactions among mice. This system provides an efficient tool for advanced behavioral analysis in small animals and offers an objective method to infer their focus of attention.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Methods
Cell Reports Methods Chemistry (General), Biochemistry, Genetics and Molecular Biology (General), Immunology and Microbiology (General)
CiteScore
3.80
自引率
0.00%
发文量
0
审稿时长
111 days
期刊最新文献
Optimized full-spectrum flow cytometry panel for deep immunophenotyping of murine lungs. A deep learning framework combining molecular image and protein structural representations identifies candidate drugs for pain. Adult zebrafish can learn Morris water maze-like tasks in a two-dimensional virtual reality system. Recovering single-cell expression profiles from spatial transcriptomics with scResolve. Mimicking and analyzing the tumor microenvironment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1