{"title":"未知线性时变系统的鲁棒数据驱动预测控制","authors":"Kaijian Hu, Tao Liu","doi":"10.1016/j.sysconle.2024.105914","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents a new robust data-driven predictive control scheme for unknown linear time-invariant systems by using input–state–output or input–output data based on whether the state is measurable. To remove the need for the persistently exciting (PE) condition of a sufficiently high order on pre-collected data, a set containing all systems capable of generating such data is constructed. Then, at each time step, an upper bound on a given objective function is derived for all systems in the set, and a feedback controller is designed to minimize this bound. The optimal control gain at each time step is determined by solving a set of linear matrix inequalities. We prove that if the synthesis problem is feasible at the initial time step, it remains feasible for all future time steps. Unlike current data-driven predictive control schemes based on behavioral system theory, our approach requires less stringent conditions for the pre-collected data, facilitating easier implementation. The effectiveness of our proposed methods is demonstrated through application to an unknown and unstable batch reactor.</p></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"193 ","pages":"Article 105914"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust data-driven predictive control for unknown linear time-invariant systems\",\"authors\":\"Kaijian Hu, Tao Liu\",\"doi\":\"10.1016/j.sysconle.2024.105914\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents a new robust data-driven predictive control scheme for unknown linear time-invariant systems by using input–state–output or input–output data based on whether the state is measurable. To remove the need for the persistently exciting (PE) condition of a sufficiently high order on pre-collected data, a set containing all systems capable of generating such data is constructed. Then, at each time step, an upper bound on a given objective function is derived for all systems in the set, and a feedback controller is designed to minimize this bound. The optimal control gain at each time step is determined by solving a set of linear matrix inequalities. We prove that if the synthesis problem is feasible at the initial time step, it remains feasible for all future time steps. Unlike current data-driven predictive control schemes based on behavioral system theory, our approach requires less stringent conditions for the pre-collected data, facilitating easier implementation. The effectiveness of our proposed methods is demonstrated through application to an unknown and unstable batch reactor.</p></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"193 \",\"pages\":\"Article 105914\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691124002020\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691124002020","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Robust data-driven predictive control for unknown linear time-invariant systems
This paper presents a new robust data-driven predictive control scheme for unknown linear time-invariant systems by using input–state–output or input–output data based on whether the state is measurable. To remove the need for the persistently exciting (PE) condition of a sufficiently high order on pre-collected data, a set containing all systems capable of generating such data is constructed. Then, at each time step, an upper bound on a given objective function is derived for all systems in the set, and a feedback controller is designed to minimize this bound. The optimal control gain at each time step is determined by solving a set of linear matrix inequalities. We prove that if the synthesis problem is feasible at the initial time step, it remains feasible for all future time steps. Unlike current data-driven predictive control schemes based on behavioral system theory, our approach requires less stringent conditions for the pre-collected data, facilitating easier implementation. The effectiveness of our proposed methods is demonstrated through application to an unknown and unstable batch reactor.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.