水能储存装置中不锈钢集流器上的多功能聚合物涂层

IF 2.7 3区 化学 Q2 CHEMISTRY, INORGANIC & NUCLEAR Inorganica Chimica Acta Pub Date : 2024-08-30 DOI:10.1016/j.ica.2024.122341
{"title":"水能储存装置中不锈钢集流器上的多功能聚合物涂层","authors":"","doi":"10.1016/j.ica.2024.122341","DOIUrl":null,"url":null,"abstract":"<div><p>Herein, low cost stainless steel foils are employed as current collectors in aqueous Na-ion supercapacitors, while the foils are coated with following conducting polymers, namely, polyimide (PI), Schiff base polymer (SBP), polyanthraquinone sulfide (PAQS) and polyaniline (PANI). The foremost purpose of these polymeric coatings is the prevention of corrosion, and the resultant improvements in device performances. Notwithstanding, these polymeric coatings provide few additional benefits in device characteristics, and these are following: (i) enhancement of electrolyte stability window, (ii) contributing charge storage capacitance, (iii) conversion of 2D pristine substrate to 3D porous current collector. The four coating polymers are electrochemically characterized, and PI is selected for fabricating Na-ion supercapacitor cells. The PI-coating reduces the stainless steel’s corrosion rate ∼ 68 times, expands the electrolyte stability window ∼ 1.2 times, and delivers ∼ 2 times higher capacitance with respect to pristine current collector, whereas no appreciable interfacial resistances are observed. The supercapacitor cell with PI-functionality demonstrates ∼ 6.6 times improved capacitance than that of pristine cell at 25 mA/g current density, while &gt; 95 and ∼ 90 % Faradaic efficiencies are noted for former and latter, respectively. The distinct enhancement of cell performances clearly demonstrates the effectiveness of multifunctional polymeric coating on corrosion-prone metallic current collectors.</p></div>","PeriodicalId":13599,"journal":{"name":"Inorganica Chimica Acta","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0020169324004328/pdfft?md5=84d6af4ee0c2f189681bb3dd4d06b3f4&pid=1-s2.0-S0020169324004328-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Multifunctional polymeric coating on stainless steel current collectors in aqueous energy storage devices\",\"authors\":\"\",\"doi\":\"10.1016/j.ica.2024.122341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Herein, low cost stainless steel foils are employed as current collectors in aqueous Na-ion supercapacitors, while the foils are coated with following conducting polymers, namely, polyimide (PI), Schiff base polymer (SBP), polyanthraquinone sulfide (PAQS) and polyaniline (PANI). The foremost purpose of these polymeric coatings is the prevention of corrosion, and the resultant improvements in device performances. Notwithstanding, these polymeric coatings provide few additional benefits in device characteristics, and these are following: (i) enhancement of electrolyte stability window, (ii) contributing charge storage capacitance, (iii) conversion of 2D pristine substrate to 3D porous current collector. The four coating polymers are electrochemically characterized, and PI is selected for fabricating Na-ion supercapacitor cells. The PI-coating reduces the stainless steel’s corrosion rate ∼ 68 times, expands the electrolyte stability window ∼ 1.2 times, and delivers ∼ 2 times higher capacitance with respect to pristine current collector, whereas no appreciable interfacial resistances are observed. The supercapacitor cell with PI-functionality demonstrates ∼ 6.6 times improved capacitance than that of pristine cell at 25 mA/g current density, while &gt; 95 and ∼ 90 % Faradaic efficiencies are noted for former and latter, respectively. The distinct enhancement of cell performances clearly demonstrates the effectiveness of multifunctional polymeric coating on corrosion-prone metallic current collectors.</p></div>\",\"PeriodicalId\":13599,\"journal\":{\"name\":\"Inorganica Chimica Acta\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0020169324004328/pdfft?md5=84d6af4ee0c2f189681bb3dd4d06b3f4&pid=1-s2.0-S0020169324004328-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganica Chimica Acta\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0020169324004328\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020169324004328","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

在这里,低成本不锈钢箔被用作水性钠离子超级电容器中的电流收集器,同时在不锈钢箔上涂覆以下导电聚合物,即聚酰亚胺(PI)、席夫碱聚合物(SBP)、聚蒽醌硫化物(PAQS)和聚苯胺(PANI)。这些聚合物涂层的首要目的是防止腐蚀,从而提高设备性能。尽管如此,这些聚合物涂层还能为设备特性带来一些额外的好处,具体如下:(i) 增强电解液稳定性窗口;(ii) 提高电荷存储电容;(iii) 将二维原始基底转化为三维多孔集流器。对四种涂层聚合物进行了电化学表征,并选择 PI 用于制造钠离子超级电容器电池。PI 涂层使不锈钢的腐蚀率降低了 68 倍,电解液稳定性窗口扩大了 1.2 倍,电容比原始集电体高出 2 倍,同时没有观察到明显的界面电阻。在 25 mA/g 电流密度下,具有 PI 功能的超级电容器电池的电容比原始电池提高了 6.6 倍,而前者和后者的法拉第效率分别为 95% 和 90%。电池性能的显著提高清楚地表明了多功能聚合物涂层在易腐蚀金属集电器上的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multifunctional polymeric coating on stainless steel current collectors in aqueous energy storage devices

Herein, low cost stainless steel foils are employed as current collectors in aqueous Na-ion supercapacitors, while the foils are coated with following conducting polymers, namely, polyimide (PI), Schiff base polymer (SBP), polyanthraquinone sulfide (PAQS) and polyaniline (PANI). The foremost purpose of these polymeric coatings is the prevention of corrosion, and the resultant improvements in device performances. Notwithstanding, these polymeric coatings provide few additional benefits in device characteristics, and these are following: (i) enhancement of electrolyte stability window, (ii) contributing charge storage capacitance, (iii) conversion of 2D pristine substrate to 3D porous current collector. The four coating polymers are electrochemically characterized, and PI is selected for fabricating Na-ion supercapacitor cells. The PI-coating reduces the stainless steel’s corrosion rate ∼ 68 times, expands the electrolyte stability window ∼ 1.2 times, and delivers ∼ 2 times higher capacitance with respect to pristine current collector, whereas no appreciable interfacial resistances are observed. The supercapacitor cell with PI-functionality demonstrates ∼ 6.6 times improved capacitance than that of pristine cell at 25 mA/g current density, while > 95 and ∼ 90 % Faradaic efficiencies are noted for former and latter, respectively. The distinct enhancement of cell performances clearly demonstrates the effectiveness of multifunctional polymeric coating on corrosion-prone metallic current collectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganica Chimica Acta
Inorganica Chimica Acta 化学-无机化学与核化学
CiteScore
6.00
自引率
3.60%
发文量
440
审稿时长
35 days
期刊介绍: Inorganica Chimica Acta is an established international forum for all aspects of advanced Inorganic Chemistry. Original papers of high scientific level and interest are published in the form of Articles and Reviews. Topics covered include: • chemistry of the main group elements and the d- and f-block metals, including the synthesis, characterization and reactivity of coordination, organometallic, biomimetic, supramolecular coordination compounds, including associated computational studies; • synthesis, physico-chemical properties, applications of molecule-based nano-scaled clusters and nanomaterials designed using the principles of coordination chemistry, as well as coordination polymers (CPs), metal-organic frameworks (MOFs), metal-organic polyhedra (MPOs); • reaction mechanisms and physico-chemical investigations computational studies of metalloenzymes and their models; • applications of inorganic compounds, metallodrugs and molecule-based materials. Papers composed primarily of structural reports will typically not be considered for publication.
期刊最新文献
Optimizing synthesis and catalytic performance of novel β-keto-enamine complexes of Ni (II) using BBD design and PSO-ANN Zn(II)-based mechanically flexible metallosupramolecular network: Investigating rheology, morphology, anti-bacterial effect and semiconducting device performances A multifunctional metal–organic complex fluorescent probe for highly sensitive detection of lysine, CrO42-/Cr2O72-, Fe3+ and nitro-aromatic compounds Activation of persulfate by MOF-derived MnFeOx to efficiently degrade sulfadiazine: Synergistic effects from free radicals and singlet oxygen Synthesis and characterization of 3,5-bis((2-hydroxybenzylidene)amino)-N-(2-hydroxyphenyl)benzamide and Zn(II) complex: Investigation of chromic, fluorescence and DPPH radical scavenging behaviours
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1