通过多层感知器分解架构实现数据融合集成网络预测方案分类器(DFI-NFSC)

IF 6 3区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Internet of Things Pub Date : 2024-08-29 DOI:10.1016/j.iot.2024.101341
Erdem Çakan , Volkan Rodoplu , Cüneyt Güzeliş
{"title":"通过多层感知器分解架构实现数据融合集成网络预测方案分类器(DFI-NFSC)","authors":"Erdem Çakan ,&nbsp;Volkan Rodoplu ,&nbsp;Cüneyt Güzeliş","doi":"10.1016/j.iot.2024.101341","DOIUrl":null,"url":null,"abstract":"<div><p>The Massive Access Problem of the Internet of Things stands for the access problem of the wireless devices to the Gateway when the device population in the coverage area is excessive. We develop a hybrid model called Data Fusion Integrated Network Forecasting Scheme Classifier (DFI-NFSC) using a Multi-Layer Perceptron (MLP) Decomposition architecture specifically designed to address the Massive Access Problem. We utilize our custom error metric to display throughput and energy consumption results. These results are obtained by emulating the Joint Forecasting–Scheduling (JFS) system on a single IoT Gateway and distinguishing between ARIMA, LSTM, and MLP forecasters of the JFS system. The outcomes indicate that the DFI-NFCS method plays a notable role in improving performance and mitigating challenges arising from the dynamic fluctuations in the diversity of device types within an IoT gateway’s coverage zone.</p></div>","PeriodicalId":29968,"journal":{"name":"Internet of Things","volume":"28 ","pages":"Article 101341"},"PeriodicalIF":6.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Data fusion integrated network forecasting scheme classifier (DFI-NFSC) via multi-layer perceptron decomposition architecture\",\"authors\":\"Erdem Çakan ,&nbsp;Volkan Rodoplu ,&nbsp;Cüneyt Güzeliş\",\"doi\":\"10.1016/j.iot.2024.101341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Massive Access Problem of the Internet of Things stands for the access problem of the wireless devices to the Gateway when the device population in the coverage area is excessive. We develop a hybrid model called Data Fusion Integrated Network Forecasting Scheme Classifier (DFI-NFSC) using a Multi-Layer Perceptron (MLP) Decomposition architecture specifically designed to address the Massive Access Problem. We utilize our custom error metric to display throughput and energy consumption results. These results are obtained by emulating the Joint Forecasting–Scheduling (JFS) system on a single IoT Gateway and distinguishing between ARIMA, LSTM, and MLP forecasters of the JFS system. The outcomes indicate that the DFI-NFCS method plays a notable role in improving performance and mitigating challenges arising from the dynamic fluctuations in the diversity of device types within an IoT gateway’s coverage zone.</p></div>\",\"PeriodicalId\":29968,\"journal\":{\"name\":\"Internet of Things\",\"volume\":\"28 \",\"pages\":\"Article 101341\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Internet of Things\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2542660524002828\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Internet of Things","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2542660524002828","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

物联网的大规模接入问题是指当覆盖区域内的设备数量过多时,无线设备接入网关的问题。我们开发了一种混合模型,称为数据融合集成网络预测方案分类器(DFI-NFSC),它采用多层感知器(MLP)分解架构,专门用于解决大规模接入问题。我们利用自定义误差度量来显示吞吐量和能耗结果。这些结果是通过在单个物联网网关上模拟联合预测-调度(JFS)系统,并区分 JFS 系统的 ARIMA、LSTM 和 MLP 预测器得出的。结果表明,DFI-NFCS 方法在提高性能和缓解物联网网关覆盖区域内设备类型多样性动态波动带来的挑战方面发挥了显著作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data fusion integrated network forecasting scheme classifier (DFI-NFSC) via multi-layer perceptron decomposition architecture

The Massive Access Problem of the Internet of Things stands for the access problem of the wireless devices to the Gateway when the device population in the coverage area is excessive. We develop a hybrid model called Data Fusion Integrated Network Forecasting Scheme Classifier (DFI-NFSC) using a Multi-Layer Perceptron (MLP) Decomposition architecture specifically designed to address the Massive Access Problem. We utilize our custom error metric to display throughput and energy consumption results. These results are obtained by emulating the Joint Forecasting–Scheduling (JFS) system on a single IoT Gateway and distinguishing between ARIMA, LSTM, and MLP forecasters of the JFS system. The outcomes indicate that the DFI-NFCS method plays a notable role in improving performance and mitigating challenges arising from the dynamic fluctuations in the diversity of device types within an IoT gateway’s coverage zone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Internet of Things
Internet of Things Multiple-
CiteScore
3.60
自引率
5.10%
发文量
115
审稿时长
37 days
期刊介绍: Internet of Things; Engineering Cyber Physical Human Systems is a comprehensive journal encouraging cross collaboration between researchers, engineers and practitioners in the field of IoT & Cyber Physical Human Systems. The journal offers a unique platform to exchange scientific information on the entire breadth of technology, science, and societal applications of the IoT. The journal will place a high priority on timely publication, and provide a home for high quality. Furthermore, IOT is interested in publishing topical Special Issues on any aspect of IOT.
期刊最新文献
Mitigating smart contract vulnerabilities in electronic toll collection using blockchain security LBTMA: An integrated P4-enabled framework for optimized traffic management in SD-IoT networks AI-based autonomous UAV swarm system for weed detection and treatment: Enhancing organic orange orchard efficiency with agriculture 5.0 A consortium blockchain-edge enabled authentication scheme for underwater acoustic network (UAN) Is artificial intelligence a new battleground for cybersecurity?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1