Aleksandar Kuzmanov, Souzan Salemi, Daniel Eberli, Benedikt Kranzbühler
{"title":"使用度他雄胺和洛伐他汀治疗后前列腺癌细胞中前列腺特异性膜抗原(PSMA)表达的调节作用","authors":"Aleksandar Kuzmanov, Souzan Salemi, Daniel Eberli, Benedikt Kranzbühler","doi":"10.1016/j.neo.2024.101045","DOIUrl":null,"url":null,"abstract":"<div><p>PSMA expression gradually increases from benign prostatic hyperplasia to adenocarcinoma of the prostate and is therefore used for the development of improved diagnostic (PSMA)‐based prostate cancer imaging tools. Pharmacological induction of PSMA is therefore eminent to further improve the detection rate of PSMA-based imaging. Our previous studies have demonstrated that lovastatin (Lova) and dutasteride (Duta) are able to induce PSMA expression. However, the mechanisms by which PSMA is regulated in prostate cancer remain poorly understood. Androgen receptor (AR) and homeobox B13 (HOXB13) are the best known regulators of PSMA, hence in the present study we aimed to explore the PSMA regulation by HOXB13 and AR signaling in LNCaP and VCaP cells following treatments with Lova and Duta. Furthermore, our previous research revealed a growth arrest in prostate cancer cells after Lova, but not after Duta treatment. To understand this discrepancy, we explored the influence of Lova and Duta on well known tumor growth promoters, such as AR, the mTOR/Akt signaling pathways and Cyclin D1. Our results showed that treatment with Lova leads to a significant inhibition of the investigated tumor promoters and results in growth regression of LNCaP and VCaP cells. In contrast, Duta does not show these effects. Furthermore, we confirm the cooperative effect of HOXB13 and AR in regulating PSMA in LNCaP cells, and extend the investigations to an additional prostate cancer cell line (VCaP).</p></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"57 ","pages":"Article 101045"},"PeriodicalIF":4.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1476558624000873/pdfft?md5=9afd6a0905160461c05068e75f7f8b9b&pid=1-s2.0-S1476558624000873-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Regulation of prostate-specific membrane antigen (PSMA) expression in prostate cancer cells after treatment with dutasteride and lovastatin\",\"authors\":\"Aleksandar Kuzmanov, Souzan Salemi, Daniel Eberli, Benedikt Kranzbühler\",\"doi\":\"10.1016/j.neo.2024.101045\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>PSMA expression gradually increases from benign prostatic hyperplasia to adenocarcinoma of the prostate and is therefore used for the development of improved diagnostic (PSMA)‐based prostate cancer imaging tools. Pharmacological induction of PSMA is therefore eminent to further improve the detection rate of PSMA-based imaging. Our previous studies have demonstrated that lovastatin (Lova) and dutasteride (Duta) are able to induce PSMA expression. However, the mechanisms by which PSMA is regulated in prostate cancer remain poorly understood. Androgen receptor (AR) and homeobox B13 (HOXB13) are the best known regulators of PSMA, hence in the present study we aimed to explore the PSMA regulation by HOXB13 and AR signaling in LNCaP and VCaP cells following treatments with Lova and Duta. Furthermore, our previous research revealed a growth arrest in prostate cancer cells after Lova, but not after Duta treatment. To understand this discrepancy, we explored the influence of Lova and Duta on well known tumor growth promoters, such as AR, the mTOR/Akt signaling pathways and Cyclin D1. Our results showed that treatment with Lova leads to a significant inhibition of the investigated tumor promoters and results in growth regression of LNCaP and VCaP cells. In contrast, Duta does not show these effects. Furthermore, we confirm the cooperative effect of HOXB13 and AR in regulating PSMA in LNCaP cells, and extend the investigations to an additional prostate cancer cell line (VCaP).</p></div>\",\"PeriodicalId\":18917,\"journal\":{\"name\":\"Neoplasia\",\"volume\":\"57 \",\"pages\":\"Article 101045\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1476558624000873/pdfft?md5=9afd6a0905160461c05068e75f7f8b9b&pid=1-s2.0-S1476558624000873-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neoplasia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1476558624000873\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558624000873","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
Regulation of prostate-specific membrane antigen (PSMA) expression in prostate cancer cells after treatment with dutasteride and lovastatin
PSMA expression gradually increases from benign prostatic hyperplasia to adenocarcinoma of the prostate and is therefore used for the development of improved diagnostic (PSMA)‐based prostate cancer imaging tools. Pharmacological induction of PSMA is therefore eminent to further improve the detection rate of PSMA-based imaging. Our previous studies have demonstrated that lovastatin (Lova) and dutasteride (Duta) are able to induce PSMA expression. However, the mechanisms by which PSMA is regulated in prostate cancer remain poorly understood. Androgen receptor (AR) and homeobox B13 (HOXB13) are the best known regulators of PSMA, hence in the present study we aimed to explore the PSMA regulation by HOXB13 and AR signaling in LNCaP and VCaP cells following treatments with Lova and Duta. Furthermore, our previous research revealed a growth arrest in prostate cancer cells after Lova, but not after Duta treatment. To understand this discrepancy, we explored the influence of Lova and Duta on well known tumor growth promoters, such as AR, the mTOR/Akt signaling pathways and Cyclin D1. Our results showed that treatment with Lova leads to a significant inhibition of the investigated tumor promoters and results in growth regression of LNCaP and VCaP cells. In contrast, Duta does not show these effects. Furthermore, we confirm the cooperative effect of HOXB13 and AR in regulating PSMA in LNCaP cells, and extend the investigations to an additional prostate cancer cell line (VCaP).
期刊介绍:
Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.