探索各向异性紧凑天体的物理特性,在 F(Q)引力下约束其超越标准极限的质量-半径关系

IF 5 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS Physics of the Dark Universe Pub Date : 2024-08-24 DOI:10.1016/j.dark.2024.101622
Abdelghani Errehymy , S.K. Maurya , K. Boshkayev , Abdel-Haleem Abdel-Aty , H.I. Alrebdi , Mona Mahmoud
{"title":"探索各向异性紧凑天体的物理特性,在 F(Q)引力下约束其超越标准极限的质量-半径关系","authors":"Abdelghani Errehymy ,&nbsp;S.K. Maurya ,&nbsp;K. Boshkayev ,&nbsp;Abdel-Haleem Abdel-Aty ,&nbsp;H.I. Alrebdi ,&nbsp;Mona Mahmoud","doi":"10.1016/j.dark.2024.101622","DOIUrl":null,"url":null,"abstract":"<div><p>The progress in theoretical modeling of compact high-mass stars in the context of alternative gravity has become important in minimizing challenges associated with neutron star (NS) radius measurements. On this basis, we have presented a rigorous study of compact objects beyond the standard limit in gravity <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> in particular <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Q</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> where <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are constants. After formulating the basic equations and finding their relevant solutions by assuming a well-behaved ansatz for the metric potential as well as for anisotropy monitored by the parameters <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, along with imposing the boundary conditions on the system under treatment, we have developed a stellar model for anisotropic stars. Specifically, we explored the physical properties of these anisotropic stars and provided novel mass–radius (<span><math><mrow><mi>M</mi><mo>−</mo><mi>R</mi></mrow></math></span>) relations with models falling in the mass gap of the events GW190814 and GW200210, as well as the effects of slow rotation and moment of inertia on these findings. Interestingly, the behavior of the <span><math><mrow><mi>M</mi><mo>−</mo><mi>R</mi></mrow></math></span> curves represents a polytropic-type equation of state (EOS) for a negative <span><math><mi>Λ</mi></math></span>, while a positive <span><math><mi>Λ</mi></math></span> corresponds to a quark matter EOS. However, the analysis reveals that the predicted radii of the compact object observed in the GW190814 event, with a mass of 2.5–2.67 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, is approximately 11.4 km for the de Sitter (dS) case and 11.8 km for the anti-de Sitter (AdS) case, assuming a specific value of the parameter <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>. Furthermore, for <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>, the model predicts the existence of more compact stars with a maximum mass of approximately <span><math><mrow><mn>3</mn><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span>, which is in good agreement with the <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> model of NSs maintaining the Sly EOS. From the <span><math><mrow><mi>I</mi><mo>−</mo><mi>M</mi></mrow></math></span> curves, it can be observed that higher values of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity can sustain high moments of inertia (I) of stars with high masses. Interestingly, we obtained the range of <span><math><mi>I</mi></math></span> for the dS space as [<span><math><mrow><mn>1</mn><mo>.</mo><mn>92</mn><mo>,</mo><mspace></mspace><mn>3</mn><mo>.</mo><mn>92</mn></mrow></math></span>]<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>45</mn></mrow></msup><mspace></mspace><msup><mrow><mi>gcm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and for the AdS space as [<span><math><mrow><mn>2</mn><mo>.</mo><mn>01</mn><mo>,</mo><mspace></mspace><mn>4</mn><mo>.</mo><mn>03</mn></mrow></math></span>]<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>45</mn></mrow></msup><mspace></mspace><msup><mrow><mi>gcm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> for <span><math><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mn>1</mn><mo>.</mo><mn>2</mn></mrow></math></span>.</p></div>","PeriodicalId":48774,"journal":{"name":"Physics of the Dark Universe","volume":"46 ","pages":"Article 101622"},"PeriodicalIF":5.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the physical properties of anisotropic compact objects and constraining their mass–radius relations beyond standard limit in F(Q)-gravity\",\"authors\":\"Abdelghani Errehymy ,&nbsp;S.K. Maurya ,&nbsp;K. Boshkayev ,&nbsp;Abdel-Haleem Abdel-Aty ,&nbsp;H.I. Alrebdi ,&nbsp;Mona Mahmoud\",\"doi\":\"10.1016/j.dark.2024.101622\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The progress in theoretical modeling of compact high-mass stars in the context of alternative gravity has become important in minimizing challenges associated with neutron star (NS) radius measurements. On this basis, we have presented a rigorous study of compact objects beyond the standard limit in gravity <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> in particular <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>Q</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></mrow></math></span> where <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> are constants. After formulating the basic equations and finding their relevant solutions by assuming a well-behaved ansatz for the metric potential as well as for anisotropy monitored by the parameters <span><math><mrow><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>μ</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></mrow></math></span>, along with imposing the boundary conditions on the system under treatment, we have developed a stellar model for anisotropic stars. Specifically, we explored the physical properties of these anisotropic stars and provided novel mass–radius (<span><math><mrow><mi>M</mi><mo>−</mo><mi>R</mi></mrow></math></span>) relations with models falling in the mass gap of the events GW190814 and GW200210, as well as the effects of slow rotation and moment of inertia on these findings. Interestingly, the behavior of the <span><math><mrow><mi>M</mi><mo>−</mo><mi>R</mi></mrow></math></span> curves represents a polytropic-type equation of state (EOS) for a negative <span><math><mi>Λ</mi></math></span>, while a positive <span><math><mi>Λ</mi></math></span> corresponds to a quark matter EOS. However, the analysis reveals that the predicted radii of the compact object observed in the GW190814 event, with a mass of 2.5–2.67 <span><math><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></math></span>, is approximately 11.4 km for the de Sitter (dS) case and 11.8 km for the anti-de Sitter (AdS) case, assuming a specific value of the parameter <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>. Furthermore, for <span><math><mrow><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>&gt;</mo><mn>1</mn><mo>.</mo><mn>1</mn></mrow></math></span>, the model predicts the existence of more compact stars with a maximum mass of approximately <span><math><mrow><mn>3</mn><mspace></mspace><msub><mrow><mi>M</mi></mrow><mrow><mo>⊙</mo></mrow></msub></mrow></math></span>, which is in good agreement with the <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> model of NSs maintaining the Sly EOS. From the <span><math><mrow><mi>I</mi><mo>−</mo><mi>M</mi></mrow></math></span> curves, it can be observed that higher values of <span><math><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>μ</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> in <span><math><mrow><mi>F</mi><mrow><mo>(</mo><mi>Q</mi><mo>)</mo></mrow></mrow></math></span> gravity can sustain high moments of inertia (I) of stars with high masses. Interestingly, we obtained the range of <span><math><mi>I</mi></math></span> for the dS space as [<span><math><mrow><mn>1</mn><mo>.</mo><mn>92</mn><mo>,</mo><mspace></mspace><mn>3</mn><mo>.</mo><mn>92</mn></mrow></math></span>]<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>45</mn></mrow></msup><mspace></mspace><msup><mrow><mi>gcm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> and for the AdS space as [<span><math><mrow><mn>2</mn><mo>.</mo><mn>01</mn><mo>,</mo><mspace></mspace><mn>4</mn><mo>.</mo><mn>03</mn></mrow></math></span>]<span><math><mrow><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>45</mn></mrow></msup><mspace></mspace><msup><mrow><mi>gcm</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> for <span><math><mrow><mn>1</mn><mo>.</mo><mn>0</mn><mo>≤</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≤</mo><mn>1</mn><mo>.</mo><mn>2</mn></mrow></math></span>.</p></div>\",\"PeriodicalId\":48774,\"journal\":{\"name\":\"Physics of the Dark Universe\",\"volume\":\"46 \",\"pages\":\"Article 101622\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of the Dark Universe\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2212686424002048\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Dark Universe","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2212686424002048","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在替代引力的背景下,紧凑型高质恒星理论建模的进展对于最大限度地减少与中子星(NS)半径测量相关的挑战变得非常重要。在此基础上,我们对引力 F(Q),特别是 F(Q)=b1Q+b2(其中 b1 和 b2 是常数)的标准极限之外的紧凑天体进行了严格研究。通过对度量势以及由参数μ1,μ2,b1监控的各向异性假设一个良好的安瑟兹,并对所处理的系统施加边界条件,我们提出了基本方程并找到了它们的相关解,之后我们为各向异性恒星建立了一个恒星模型。具体来说,我们探索了这些各向异性恒星的物理性质,并提供了新的质量-半径(M-R)关系,这些关系与GW190814和GW200210事件的质量差距以及慢旋转和惯性矩对这些发现的影响有关。有趣的是,M-R 曲线的行为表现为负Λ的多向型状态方程(EOS),而正Λ则对应于夸克物质 EOS。然而,分析表明,假设参数b1=1.1的特定值,在GW190814事件中观测到的质量为2.5-2.67 M⊙的紧凑物体的预测半径,在de Sitter(dS)情况下约为11.4千米,在anti-de Sitter(AdS)情况下约为11.8千米。此外,对于 b1>1.1,该模型预测存在更紧凑的恒星,其最大质量约为 3M⊙,这与保持斯莱 EOS 的新星 R2 模型非常吻合。从I-M曲线可以看出,F(Q)引力中较高的b1和μ1值可以维持高质量恒星的高惯性矩(I)。有趣的是,在 1.0≤b1≤1.2 的条件下,我们得到了 dS 空间的 I 范围为 [1.92,3.92]×1045gcm2 ,AdS 空间的 I 范围为 [2.01,4.03]×1045gcm2 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the physical properties of anisotropic compact objects and constraining their mass–radius relations beyond standard limit in F(Q)-gravity

The progress in theoretical modeling of compact high-mass stars in the context of alternative gravity has become important in minimizing challenges associated with neutron star (NS) radius measurements. On this basis, we have presented a rigorous study of compact objects beyond the standard limit in gravity F(Q) in particular F(Q)=b1Q+b2 where b1 and b2 are constants. After formulating the basic equations and finding their relevant solutions by assuming a well-behaved ansatz for the metric potential as well as for anisotropy monitored by the parameters μ1,μ2,b1, along with imposing the boundary conditions on the system under treatment, we have developed a stellar model for anisotropic stars. Specifically, we explored the physical properties of these anisotropic stars and provided novel mass–radius (MR) relations with models falling in the mass gap of the events GW190814 and GW200210, as well as the effects of slow rotation and moment of inertia on these findings. Interestingly, the behavior of the MR curves represents a polytropic-type equation of state (EOS) for a negative Λ, while a positive Λ corresponds to a quark matter EOS. However, the analysis reveals that the predicted radii of the compact object observed in the GW190814 event, with a mass of 2.5–2.67 M, is approximately 11.4 km for the de Sitter (dS) case and 11.8 km for the anti-de Sitter (AdS) case, assuming a specific value of the parameter b1=1.1. Furthermore, for b1>1.1, the model predicts the existence of more compact stars with a maximum mass of approximately 3M, which is in good agreement with the R2 model of NSs maintaining the Sly EOS. From the IM curves, it can be observed that higher values of b1 and μ1 in F(Q) gravity can sustain high moments of inertia (I) of stars with high masses. Interestingly, we obtained the range of I for the dS space as [1.92,3.92]×1045gcm2 and for the AdS space as [2.01,4.03]×1045gcm2 for 1.0b11.2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics of the Dark Universe
Physics of the Dark Universe ASTRONOMY & ASTROPHYSICS-
CiteScore
9.60
自引率
7.30%
发文量
118
审稿时长
61 days
期刊介绍: Physics of the Dark Universe is an innovative online-only journal that offers rapid publication of peer-reviewed, original research articles considered of high scientific impact. The journal is focused on the understanding of Dark Matter, Dark Energy, Early Universe, gravitational waves and neutrinos, covering all theoretical, experimental and phenomenological aspects.
期刊最新文献
Neutron star collapse from accretion: A probe of massive dark matter particles Astrophysical implications of Weyl geometric black holes: Shadows and strong gravitational lensing Shadows and quasinormal modes of rotating black holes in Horndeski theory: Parameter constraints using EHT observations of M87* and Sgr A* Cosmological inflation in the modified gravity model f(Q,C) Study of cosmological dark energy models under f(Q) gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1