利用声发射技术监测层压复合材料的结构健康状况:新型 CNN-LSTM 框架

IF 4.7 2区 工程技术 Q1 MECHANICS Engineering Fracture Mechanics Pub Date : 2024-09-02 DOI:10.1016/j.engfracmech.2024.110447
{"title":"利用声发射技术监测层压复合材料的结构健康状况:新型 CNN-LSTM 框架","authors":"","doi":"10.1016/j.engfracmech.2024.110447","DOIUrl":null,"url":null,"abstract":"<div><p>This research has developed a real-time end-to-end deep learning model for structural health monitoring (SHM) method for composite impact damage diagnosis based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The acoustic emission (AE) signals collected under low-velocity impacts by means of piezoelectric sensors on composite materials are used for training deep learning networks. Based on the impact load curves, specimens are categorized into minor failure, intermediate failure, and severe failure. The convolved signals are segmented and reconstructed at a given length for the following LSTM module. The average accuracies for basic CNN, CNN– Recurrent Neural Network (RNN), CNN-LSTM, and CNN– Gated Recurrent Unit (GRU) are respectively 88.7 %, 92.6 %, 98 %, and 95.4 %. A sensitivity analysis on sub-signal length was conducted on the CNN-LSTM model, revealing that the model achieved its best performance when the sub-signal length was set at 16. The model attained prediction accuracies of 97.4 %, 100 %, and 100 %, respectively, for minor failure, intermediate failure, and severe failure cases.</p></div>","PeriodicalId":11576,"journal":{"name":"Engineering Fracture Mechanics","volume":null,"pages":null},"PeriodicalIF":4.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Using acoustic emission technique for structural health monitoring of laminate composite: A novel CNN-LSTM framework\",\"authors\":\"\",\"doi\":\"10.1016/j.engfracmech.2024.110447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This research has developed a real-time end-to-end deep learning model for structural health monitoring (SHM) method for composite impact damage diagnosis based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The acoustic emission (AE) signals collected under low-velocity impacts by means of piezoelectric sensors on composite materials are used for training deep learning networks. Based on the impact load curves, specimens are categorized into minor failure, intermediate failure, and severe failure. The convolved signals are segmented and reconstructed at a given length for the following LSTM module. The average accuracies for basic CNN, CNN– Recurrent Neural Network (RNN), CNN-LSTM, and CNN– Gated Recurrent Unit (GRU) are respectively 88.7 %, 92.6 %, 98 %, and 95.4 %. A sensitivity analysis on sub-signal length was conducted on the CNN-LSTM model, revealing that the model achieved its best performance when the sub-signal length was set at 16. The model attained prediction accuracies of 97.4 %, 100 %, and 100 %, respectively, for minor failure, intermediate failure, and severe failure cases.</p></div>\",\"PeriodicalId\":11576,\"journal\":{\"name\":\"Engineering Fracture Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Fracture Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0013794424006106\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Fracture Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013794424006106","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究基于卷积神经网络(CNN)和长短期记忆(LSTM),开发了一种用于复合材料冲击损伤诊断的结构健康监测(SHM)方法的实时端到端深度学习模型。通过压电传感器收集复合材料在低速冲击下的声发射(AE)信号,用于训练深度学习网络。根据冲击载荷曲线,试样被分为轻微失效、中度失效和严重失效。对卷积信号进行分段,并按给定长度进行重建,以用于后续的 LSTM 模块。基本 CNN、CNN-递归神经网络(RNN)、CNN-LSTM 和 CNN-门控递归单元(GRU)的平均准确率分别为 88.7%、92.6%、98% 和 95.4%。对 CNN-LSTM 模型的子信号长度进行了敏感性分析,结果表明,当子信号长度设置为 16 时,该模型的性能最佳。该模型对轻微故障、中等故障和严重故障的预测准确率分别达到了 97.4%、100% 和 100%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using acoustic emission technique for structural health monitoring of laminate composite: A novel CNN-LSTM framework

This research has developed a real-time end-to-end deep learning model for structural health monitoring (SHM) method for composite impact damage diagnosis based on Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM). The acoustic emission (AE) signals collected under low-velocity impacts by means of piezoelectric sensors on composite materials are used for training deep learning networks. Based on the impact load curves, specimens are categorized into minor failure, intermediate failure, and severe failure. The convolved signals are segmented and reconstructed at a given length for the following LSTM module. The average accuracies for basic CNN, CNN– Recurrent Neural Network (RNN), CNN-LSTM, and CNN– Gated Recurrent Unit (GRU) are respectively 88.7 %, 92.6 %, 98 %, and 95.4 %. A sensitivity analysis on sub-signal length was conducted on the CNN-LSTM model, revealing that the model achieved its best performance when the sub-signal length was set at 16. The model attained prediction accuracies of 97.4 %, 100 %, and 100 %, respectively, for minor failure, intermediate failure, and severe failure cases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.70
自引率
13.00%
发文量
606
审稿时长
74 days
期刊介绍: EFM covers a broad range of topics in fracture mechanics to be of interest and use to both researchers and practitioners. Contributions are welcome which address the fracture behavior of conventional engineering material systems as well as newly emerging material systems. Contributions on developments in the areas of mechanics and materials science strongly related to fracture mechanics are also welcome. Papers on fatigue are welcome if they treat the fatigue process using the methods of fracture mechanics.
期刊最新文献
Editorial Board A novel experimental method for studying rock collision Crystal plasticity-driven evaluation of notch fatigue behavior in IN718 Research on the microstructure, mechanical and fatigue performance of 7075/6061 dissimilar aluminum alloy fusion welding joint treated by nanoparticle and post-weld heat treatment Strain-gradient and damage failure behavior in particle reinforced heterogeneous matrix composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1