采用混合各向异性和混合各向同性总变化正则化差异进行盲图像去模糊处理

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2024-08-31 DOI:10.1016/j.jvcir.2024.104285
Dandan Hu , Xianyu Ge , Jing Liu , Jieqing Tan , Xiangrong She
{"title":"采用混合各向异性和混合各向同性总变化正则化差异进行盲图像去模糊处理","authors":"Dandan Hu ,&nbsp;Xianyu Ge ,&nbsp;Jing Liu ,&nbsp;Jieqing Tan ,&nbsp;Xiangrong She","doi":"10.1016/j.jvcir.2024.104285","DOIUrl":null,"url":null,"abstract":"<div><p>This paper proposes a simple model for image deblurring with a new total variation regularization. Classically, the <em>L</em><sub>1-21</sub> regularizer represents a difference of anisotropic (i.e. <em>L</em><sub>1</sub>) and isotropic (i.e. <em>L</em><sub>21</sub>) total variation, so we define a new regularization as <em>L</em><sub>e-2e</sub>, which is the weighted difference of the mixed anisotropic (i.e. <em>L</em><sub>0</sub> + <em>L</em><sub>1</sub> = <em>L</em><sub>e</sub>) and mixed isotropic (i.e. <em>L</em><sub>0</sub> + <em>L</em><sub>21</sub> = <em>L</em><sub>2e</sub>), and it is characterized by sparsity-promoting<!--> <!-->and robustness in image deblurring. Then, we merge the <em>L</em><sub>0</sub>-gradient into the model for edge-preserving and detail-removing. The union of the <em>L</em><sub>e-2e</sub> regularization and <em>L</em><sub>0</sub>-gradient improves the performance of image deblurring and yields high-quality blur kernel estimates. Finally, we design a new solution format that alternately iterates the difference of convex algorithm, the split Bregman method, and the approach of half-quadratic splitting to optimize the proposed model. Experimental results on quantitative datasets and real-world images show that the proposed method can obtain results comparable to state-of-the-art works.</p></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"104 ","pages":"Article 104285"},"PeriodicalIF":2.6000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blind image deblurring with a difference of the mixed anisotropic and mixed isotropic total variation regularization\",\"authors\":\"Dandan Hu ,&nbsp;Xianyu Ge ,&nbsp;Jing Liu ,&nbsp;Jieqing Tan ,&nbsp;Xiangrong She\",\"doi\":\"10.1016/j.jvcir.2024.104285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper proposes a simple model for image deblurring with a new total variation regularization. Classically, the <em>L</em><sub>1-21</sub> regularizer represents a difference of anisotropic (i.e. <em>L</em><sub>1</sub>) and isotropic (i.e. <em>L</em><sub>21</sub>) total variation, so we define a new regularization as <em>L</em><sub>e-2e</sub>, which is the weighted difference of the mixed anisotropic (i.e. <em>L</em><sub>0</sub> + <em>L</em><sub>1</sub> = <em>L</em><sub>e</sub>) and mixed isotropic (i.e. <em>L</em><sub>0</sub> + <em>L</em><sub>21</sub> = <em>L</em><sub>2e</sub>), and it is characterized by sparsity-promoting<!--> <!-->and robustness in image deblurring. Then, we merge the <em>L</em><sub>0</sub>-gradient into the model for edge-preserving and detail-removing. The union of the <em>L</em><sub>e-2e</sub> regularization and <em>L</em><sub>0</sub>-gradient improves the performance of image deblurring and yields high-quality blur kernel estimates. Finally, we design a new solution format that alternately iterates the difference of convex algorithm, the split Bregman method, and the approach of half-quadratic splitting to optimize the proposed model. Experimental results on quantitative datasets and real-world images show that the proposed method can obtain results comparable to state-of-the-art works.</p></div>\",\"PeriodicalId\":54755,\"journal\":{\"name\":\"Journal of Visual Communication and Image Representation\",\"volume\":\"104 \",\"pages\":\"Article 104285\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Visual Communication and Image Representation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1047320324002414\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320324002414","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种利用新的总变化正则化进行图像去模糊的简单模型。通常,L1-21 正则化表示各向异性(即 L1)和各向同性(即 L21)总变化的差值,因此我们定义了一种新的正则化为 Le-2e,它是混合各向异性(即 L0 + L1 = Le)和混合各向同性(即 L0 + L21 = L2e)的加权差值,在图像去模糊中具有促进稀疏性和鲁棒性的特点。然后,我们将 L0 梯度合并到模型中,以实现边缘保留和细节去除。Le-2e 正则化和 L0-gradient 的结合提高了图像去模糊的性能,并得到了高质量的模糊核估计值。最后,我们设计了一种新的求解格式,交替迭代凸算法差分、分裂布雷格曼方法和半二次分裂方法,以优化所提出的模型。在定量数据集和真实世界图像上的实验结果表明,所提出的方法可以获得与最先进方法相媲美的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Blind image deblurring with a difference of the mixed anisotropic and mixed isotropic total variation regularization

This paper proposes a simple model for image deblurring with a new total variation regularization. Classically, the L1-21 regularizer represents a difference of anisotropic (i.e. L1) and isotropic (i.e. L21) total variation, so we define a new regularization as Le-2e, which is the weighted difference of the mixed anisotropic (i.e. L0 + L1 = Le) and mixed isotropic (i.e. L0 + L21 = L2e), and it is characterized by sparsity-promoting and robustness in image deblurring. Then, we merge the L0-gradient into the model for edge-preserving and detail-removing. The union of the Le-2e regularization and L0-gradient improves the performance of image deblurring and yields high-quality blur kernel estimates. Finally, we design a new solution format that alternately iterates the difference of convex algorithm, the split Bregman method, and the approach of half-quadratic splitting to optimize the proposed model. Experimental results on quantitative datasets and real-world images show that the proposed method can obtain results comparable to state-of-the-art works.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Illumination-guided dual-branch fusion network for partition-based image exposure correction HRGUNet: A novel high-resolution generative adversarial network combined with an improved UNet method for brain tumor segmentation Underwater image enhancement method via extreme enhancement and ultimate weakening Multi-level similarity transfer and adaptive fusion data augmentation for few-shot object detection Color image watermarking using vector SNCM-HMT
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1