{"title":"采用稳态离散的非交错中心方案,通过流量全局化解决明渠水流问题","authors":"Zhen Li","doi":"10.1016/j.apnum.2024.08.022","DOIUrl":null,"url":null,"abstract":"<div><p>The paper proposed a second-order steady-state-preserving nonstaggered central scheme for solving one-layer and two-layer open channel flows via the flux globalization. The global flux transforms the model into the homogeneous form, avoiding the complex discretization of the source terms. However, when the traditional appropriate quadrature rule discrete the global variables, the scheme tends to maintain only the moving-water equilibrium but not the “lake at rest” equilibrium. This paper proposes a new discretization method, the steady-state discretization (SSD) method of global variables, so that not only the still-water equilibrium can be maintained, but also the moving-water equilibrium, i.e., the discharge, the energy and the global flux are equilibrium. The scheme also ensures that the cross-sectional wet area is positive by introducing a “draining” time-step technique. Numerical experiments verify that the scheme is well-balanced, positivity-preserving and robust when flowing through open channel flows under the continuous or discontinuous bottom topography and channel width, and exactly capturing small perturbations and propagating interfaces of the steady-state solution.</p></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"207 ","pages":"Pages 58-85"},"PeriodicalIF":2.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonstaggered central scheme with steady-state discretization for solving the open channel flows via the flux globalization\",\"authors\":\"Zhen Li\",\"doi\":\"10.1016/j.apnum.2024.08.022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The paper proposed a second-order steady-state-preserving nonstaggered central scheme for solving one-layer and two-layer open channel flows via the flux globalization. The global flux transforms the model into the homogeneous form, avoiding the complex discretization of the source terms. However, when the traditional appropriate quadrature rule discrete the global variables, the scheme tends to maintain only the moving-water equilibrium but not the “lake at rest” equilibrium. This paper proposes a new discretization method, the steady-state discretization (SSD) method of global variables, so that not only the still-water equilibrium can be maintained, but also the moving-water equilibrium, i.e., the discharge, the energy and the global flux are equilibrium. The scheme also ensures that the cross-sectional wet area is positive by introducing a “draining” time-step technique. Numerical experiments verify that the scheme is well-balanced, positivity-preserving and robust when flowing through open channel flows under the continuous or discontinuous bottom topography and channel width, and exactly capturing small perturbations and propagating interfaces of the steady-state solution.</p></div>\",\"PeriodicalId\":8199,\"journal\":{\"name\":\"Applied Numerical Mathematics\",\"volume\":\"207 \",\"pages\":\"Pages 58-85\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Numerical Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168927424002277\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424002277","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Nonstaggered central scheme with steady-state discretization for solving the open channel flows via the flux globalization
The paper proposed a second-order steady-state-preserving nonstaggered central scheme for solving one-layer and two-layer open channel flows via the flux globalization. The global flux transforms the model into the homogeneous form, avoiding the complex discretization of the source terms. However, when the traditional appropriate quadrature rule discrete the global variables, the scheme tends to maintain only the moving-water equilibrium but not the “lake at rest” equilibrium. This paper proposes a new discretization method, the steady-state discretization (SSD) method of global variables, so that not only the still-water equilibrium can be maintained, but also the moving-water equilibrium, i.e., the discharge, the energy and the global flux are equilibrium. The scheme also ensures that the cross-sectional wet area is positive by introducing a “draining” time-step technique. Numerical experiments verify that the scheme is well-balanced, positivity-preserving and robust when flowing through open channel flows under the continuous or discontinuous bottom topography and channel width, and exactly capturing small perturbations and propagating interfaces of the steady-state solution.
期刊介绍:
The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are:
(i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments.
(ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers.
(iii) Short notes, which present specific new results and techniques in a brief communication.