印度洋岩石圈有效弹性厚度的空间变化

IF 2.7 3区 地球科学 Q2 GEOSCIENCES, MULTIDISCIPLINARY Journal of Asian Earth Sciences Pub Date : 2024-09-01 DOI:10.1016/j.jseaes.2024.106315
{"title":"印度洋岩石圈有效弹性厚度的空间变化","authors":"","doi":"10.1016/j.jseaes.2024.106315","DOIUrl":null,"url":null,"abstract":"<div><p>The Indian Ocean lithosphere is a complex assemblage of large igneous provinces, seamounts, plateaus and ridges of different loading ages and tectono-thermal evolution. As a proxy for the strength of tectonic plates, effective elastic thickness (<em>T<sub>e</sub></em>) illustrates the relationship between surface deformation and lithospheric rheology of the diverse provinces in response to long-term tectonic processes. Mapping the spatial variations in lithospheric rheology can aid in understanding the detailed tectono-thermal history of the Indian Ocean. In this paper, we perform an assessment of the spatial variation of <em>T<sub>e</sub></em> for the Indian Ocean from the inversion of the real free-air admittance between free-air gravity anomalies and bathymetry corrected for the effect of density variations within sediments using a continuous wavelet spectral analysis. Incorporating the effect of sediments substantially reduces <em>T<sub>e</sub></em> estimates and better corresponds with the tectonic units in the study region. The results show low overall <em>T<sub>e</sub></em> over the Indian Ocean attributed to magmatism and temperature during a multistage opening process. We further demonstrate that temperature controls the strength of warm and young oceanic lithosphere, evidenced by the positive correlation between <em>T<sub>e</sub></em> and geothermal proxies. Finally, moderately low <em>T<sub>e</sub></em> values at the Southwest Indian Ridge suggest a relatively cold ultraslow lithosphere with sparse magmatism compared to typical mid-ocean ridges.</p></div>","PeriodicalId":50253,"journal":{"name":"Journal of Asian Earth Sciences","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial variations in the effective elastic thickness of the Indian Ocean lithosphere\",\"authors\":\"\",\"doi\":\"10.1016/j.jseaes.2024.106315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Indian Ocean lithosphere is a complex assemblage of large igneous provinces, seamounts, plateaus and ridges of different loading ages and tectono-thermal evolution. As a proxy for the strength of tectonic plates, effective elastic thickness (<em>T<sub>e</sub></em>) illustrates the relationship between surface deformation and lithospheric rheology of the diverse provinces in response to long-term tectonic processes. Mapping the spatial variations in lithospheric rheology can aid in understanding the detailed tectono-thermal history of the Indian Ocean. In this paper, we perform an assessment of the spatial variation of <em>T<sub>e</sub></em> for the Indian Ocean from the inversion of the real free-air admittance between free-air gravity anomalies and bathymetry corrected for the effect of density variations within sediments using a continuous wavelet spectral analysis. Incorporating the effect of sediments substantially reduces <em>T<sub>e</sub></em> estimates and better corresponds with the tectonic units in the study region. The results show low overall <em>T<sub>e</sub></em> over the Indian Ocean attributed to magmatism and temperature during a multistage opening process. We further demonstrate that temperature controls the strength of warm and young oceanic lithosphere, evidenced by the positive correlation between <em>T<sub>e</sub></em> and geothermal proxies. Finally, moderately low <em>T<sub>e</sub></em> values at the Southwest Indian Ridge suggest a relatively cold ultraslow lithosphere with sparse magmatism compared to typical mid-ocean ridges.</p></div>\",\"PeriodicalId\":50253,\"journal\":{\"name\":\"Journal of Asian Earth Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Asian Earth Sciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1367912024003109\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asian Earth Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1367912024003109","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

印度洋岩石圈是一个由大型火成岩区、海山、高原和海脊组成的复杂集合体,具有不同的加载年龄和构造-热演化过程。作为构造板块强度的代用指标,有效弹性厚度(Te)说明了不同区域的表面变形与岩石圈流变之间在长期构造过程中的关系。绘制岩石圈流变的空间变化图有助于了解印度洋构造热历史的详细情况。在本文中,我们利用连续小波频谱分析,对自由空气重力异常和水深测量之间的实际自由空气导入量进行反演,并校正了沉积物内部密度变化的影响,从而对印度洋 Te 的空间变化进行了评估。加入沉积物的影响大大降低了 Te 的估计值,并与研究区域的构造单元更加吻合。研究结果表明,印度洋的总体 Te 值较低,这归因于岩浆活动和多级开裂过程中的温度。我们进一步证明,温度控制着温暖而年轻的大洋岩石圈的强度,Te 与地热代用指标之间的正相关性就是证明。最后,西南印度洋脊中等偏低的 Te 值表明,与典型的大洋中脊相比,其岩石圈相对寒冷,岩浆活动稀少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spatial variations in the effective elastic thickness of the Indian Ocean lithosphere

The Indian Ocean lithosphere is a complex assemblage of large igneous provinces, seamounts, plateaus and ridges of different loading ages and tectono-thermal evolution. As a proxy for the strength of tectonic plates, effective elastic thickness (Te) illustrates the relationship between surface deformation and lithospheric rheology of the diverse provinces in response to long-term tectonic processes. Mapping the spatial variations in lithospheric rheology can aid in understanding the detailed tectono-thermal history of the Indian Ocean. In this paper, we perform an assessment of the spatial variation of Te for the Indian Ocean from the inversion of the real free-air admittance between free-air gravity anomalies and bathymetry corrected for the effect of density variations within sediments using a continuous wavelet spectral analysis. Incorporating the effect of sediments substantially reduces Te estimates and better corresponds with the tectonic units in the study region. The results show low overall Te over the Indian Ocean attributed to magmatism and temperature during a multistage opening process. We further demonstrate that temperature controls the strength of warm and young oceanic lithosphere, evidenced by the positive correlation between Te and geothermal proxies. Finally, moderately low Te values at the Southwest Indian Ridge suggest a relatively cold ultraslow lithosphere with sparse magmatism compared to typical mid-ocean ridges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Asian Earth Sciences
Journal of Asian Earth Sciences 地学-地球科学综合
CiteScore
5.90
自引率
10.00%
发文量
324
审稿时长
71 days
期刊介绍: Journal of Asian Earth Sciences has an open access mirror journal Journal of Asian Earth Sciences: X, sharing the same aims and scope, editorial team, submission system and rigorous peer review. The Journal of Asian Earth Sciences is an international interdisciplinary journal devoted to all aspects of research related to the solid Earth Sciences of Asia. The Journal publishes high quality, peer-reviewed scientific papers on the regional geology, tectonics, geochemistry and geophysics of Asia. It will be devoted primarily to research papers but short communications relating to new developments of broad interest, reviews and book reviews will also be included. Papers must have international appeal and should present work of more than local significance. The scope includes deep processes of the Asian continent and its adjacent oceans; seismology and earthquakes; orogeny, magmatism, metamorphism and volcanism; growth, deformation and destruction of the Asian crust; crust-mantle interaction; evolution of life (early life, biostratigraphy, biogeography and mass-extinction); fluids, fluxes and reservoirs of mineral and energy resources; surface processes (weathering, erosion, transport and deposition of sediments) and resulting geomorphology; and the response of the Earth to global climate change as viewed within the Asian continent and surrounding oceans.
期刊最新文献
Moho topographic inversion of the South China Sea based on genetic algorithm Editorial Board Depositional and diagenetic heterogeneities in sequence stratigraphic framework of a mixed carbonate-siliciclastic reservoir: A case study from Oligocene–Miocene Asmari Formation in the Persian Gulf Sedimentary records of liquefaction from central Kerala (southwestern India), as earthquake indicators in a cratonic area Refined evaluation approach for geometrical, physical and chemical properties of completely decomposed tuff soil particles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1