Taehoon Oh, Sunin Jung, Seon Min Oh, Mi Hyeon Park, Hyoung-Geun Kim, Su-Yeon Lee, Sung-Kyun Ko, Hyung Won Ryu
{"title":"1,3-二苯基丙烷衍生物卡嗪醇对人类吲哚胺 2,3-二氧合酶 1 (hIDO1) 的抑制作用","authors":"Taehoon Oh, Sunin Jung, Seon Min Oh, Mi Hyeon Park, Hyoung-Geun Kim, Su-Yeon Lee, Sung-Kyun Ko, Hyung Won Ryu","doi":"10.1186/s13765-024-00923-5","DOIUrl":null,"url":null,"abstract":"<div><p>This study focused on identifying and characterizing 1,3-diphenylpropane derivatives from flavonoids that inhibit human indoleamine 2,3-dioxygenase 1 (hIDO1) enzymes, which play a role in immune regulation and are associated with various diseases. A series of isolated metabolites (1–7) demonstrated modest to high inhibition of hIDO1, with binding degree values ranging from 26.31 to 72.17%. In particular, during a target-based screening of natural products using hIDO1, kazinol J (6, a 1,3-diphenylpropane derivative) was found to potently inhibit hIDO1, with a binding degree of 72.17% at 1 ppm. Kazinol J (6) showed concentration-dependent and mixed inhibition kinetics and achieved slow and time-dependent inhibition of hIDO1. Additionally, docking simulations were performed to evaluate the inhibitory potential and binding interactions of the compounds with hIDO1. These findings suggest that these 1,3-diphenylpropane derivatives can serve as therapeutic agents for conditions involving hIDO1 dysregulation, such as cancer, autoimmune disorders, and infectious diseases.</p></div>","PeriodicalId":467,"journal":{"name":"Applied Biological Chemistry","volume":"67 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00923-5","citationCount":"0","resultStr":"{\"title\":\"Inhibitory effect of human indoleamine 2,3-dioxygenase 1 (hIDO1) by kazinols of 1,3-diphenylpropane derivatives\",\"authors\":\"Taehoon Oh, Sunin Jung, Seon Min Oh, Mi Hyeon Park, Hyoung-Geun Kim, Su-Yeon Lee, Sung-Kyun Ko, Hyung Won Ryu\",\"doi\":\"10.1186/s13765-024-00923-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study focused on identifying and characterizing 1,3-diphenylpropane derivatives from flavonoids that inhibit human indoleamine 2,3-dioxygenase 1 (hIDO1) enzymes, which play a role in immune regulation and are associated with various diseases. A series of isolated metabolites (1–7) demonstrated modest to high inhibition of hIDO1, with binding degree values ranging from 26.31 to 72.17%. In particular, during a target-based screening of natural products using hIDO1, kazinol J (6, a 1,3-diphenylpropane derivative) was found to potently inhibit hIDO1, with a binding degree of 72.17% at 1 ppm. Kazinol J (6) showed concentration-dependent and mixed inhibition kinetics and achieved slow and time-dependent inhibition of hIDO1. Additionally, docking simulations were performed to evaluate the inhibitory potential and binding interactions of the compounds with hIDO1. These findings suggest that these 1,3-diphenylpropane derivatives can serve as therapeutic agents for conditions involving hIDO1 dysregulation, such as cancer, autoimmune disorders, and infectious diseases.</p></div>\",\"PeriodicalId\":467,\"journal\":{\"name\":\"Applied Biological Chemistry\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://applbiolchem.springeropen.com/counter/pdf/10.1186/s13765-024-00923-5\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Biological Chemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s13765-024-00923-5\",\"RegionNum\":3,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Biological Chemistry","FirstCategoryId":"97","ListUrlMain":"https://link.springer.com/article/10.1186/s13765-024-00923-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Inhibitory effect of human indoleamine 2,3-dioxygenase 1 (hIDO1) by kazinols of 1,3-diphenylpropane derivatives
This study focused on identifying and characterizing 1,3-diphenylpropane derivatives from flavonoids that inhibit human indoleamine 2,3-dioxygenase 1 (hIDO1) enzymes, which play a role in immune regulation and are associated with various diseases. A series of isolated metabolites (1–7) demonstrated modest to high inhibition of hIDO1, with binding degree values ranging from 26.31 to 72.17%. In particular, during a target-based screening of natural products using hIDO1, kazinol J (6, a 1,3-diphenylpropane derivative) was found to potently inhibit hIDO1, with a binding degree of 72.17% at 1 ppm. Kazinol J (6) showed concentration-dependent and mixed inhibition kinetics and achieved slow and time-dependent inhibition of hIDO1. Additionally, docking simulations were performed to evaluate the inhibitory potential and binding interactions of the compounds with hIDO1. These findings suggest that these 1,3-diphenylpropane derivatives can serve as therapeutic agents for conditions involving hIDO1 dysregulation, such as cancer, autoimmune disorders, and infectious diseases.
期刊介绍:
Applied Biological Chemistry aims to promote the interchange and dissemination of scientific data among researchers in the field of agricultural and biological chemistry. The journal covers biochemistry and molecular biology, medical and biomaterial science, food science, and environmental science as applied to multidisciplinary agriculture.