Lanyan Xue, Wenjun Zhang, Lizheng Lu, Yunsheng Chen, Kaibin Li
{"title":"用于视网膜动脉和静脉同时分割和分类的无监督领域适应技术","authors":"Lanyan Xue, Wenjun Zhang, Lizheng Lu, Yunsheng Chen, Kaibin Li","doi":"10.1002/ima.23151","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Automatic segmentation of the fundus retinal vessels and accurate classification of the arterial and venous vessels play an important role in clinical diagnosis. This article proposes a fundus retinal vascular segmentation and arteriovenous classification network that combines the adversarial training and attention mechanism to address the issues of fundus retinal arteriovenous classification error and ambiguous segmentation of fine blood vessels. It consists of three core components: discriminator, generator, and segmenter. In order to address the domain shift issue, U-Net is employed as a discriminator, and data samples for arterial and venous vessels are generated with a generator using an unsupervised domain adaption (UDA) approach. The classification of retinal arterial and venous vessels (A/V) as well as the segmentation of fine vessels is improved by adding a self-attention mechanism to improve attention to vessel edge features and the terminal fine vessels. Non-strided convolution and non-pooled downsampling methods are also used to avoid losing fine-grained information and learning less effective feature representations. The performance of multi-class blood vessel segmentation is as follows, per test results on the DRIVE dataset: F1-score (F1) has a value of 0.7496 and an accuracy of 0.9820. The accuracy of A/V categorization has increased by 1.35% when compared to AU-Net. The outcomes demonstrate that by enhancing the baseline U-Net, the strategy we suggested enhances the automated classification and segmentation of blood vessels.</p>\n </div>","PeriodicalId":14027,"journal":{"name":"International Journal of Imaging Systems and Technology","volume":"34 5","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised Domain Adaptation for Simultaneous Segmentation and Classification of the Retinal Arteries and Veins\",\"authors\":\"Lanyan Xue, Wenjun Zhang, Lizheng Lu, Yunsheng Chen, Kaibin Li\",\"doi\":\"10.1002/ima.23151\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Automatic segmentation of the fundus retinal vessels and accurate classification of the arterial and venous vessels play an important role in clinical diagnosis. This article proposes a fundus retinal vascular segmentation and arteriovenous classification network that combines the adversarial training and attention mechanism to address the issues of fundus retinal arteriovenous classification error and ambiguous segmentation of fine blood vessels. It consists of three core components: discriminator, generator, and segmenter. In order to address the domain shift issue, U-Net is employed as a discriminator, and data samples for arterial and venous vessels are generated with a generator using an unsupervised domain adaption (UDA) approach. The classification of retinal arterial and venous vessels (A/V) as well as the segmentation of fine vessels is improved by adding a self-attention mechanism to improve attention to vessel edge features and the terminal fine vessels. Non-strided convolution and non-pooled downsampling methods are also used to avoid losing fine-grained information and learning less effective feature representations. The performance of multi-class blood vessel segmentation is as follows, per test results on the DRIVE dataset: F1-score (F1) has a value of 0.7496 and an accuracy of 0.9820. The accuracy of A/V categorization has increased by 1.35% when compared to AU-Net. The outcomes demonstrate that by enhancing the baseline U-Net, the strategy we suggested enhances the automated classification and segmentation of blood vessels.</p>\\n </div>\",\"PeriodicalId\":14027,\"journal\":{\"name\":\"International Journal of Imaging Systems and Technology\",\"volume\":\"34 5\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Imaging Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ima.23151\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Imaging Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ima.23151","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Unsupervised Domain Adaptation for Simultaneous Segmentation and Classification of the Retinal Arteries and Veins
Automatic segmentation of the fundus retinal vessels and accurate classification of the arterial and venous vessels play an important role in clinical diagnosis. This article proposes a fundus retinal vascular segmentation and arteriovenous classification network that combines the adversarial training and attention mechanism to address the issues of fundus retinal arteriovenous classification error and ambiguous segmentation of fine blood vessels. It consists of three core components: discriminator, generator, and segmenter. In order to address the domain shift issue, U-Net is employed as a discriminator, and data samples for arterial and venous vessels are generated with a generator using an unsupervised domain adaption (UDA) approach. The classification of retinal arterial and venous vessels (A/V) as well as the segmentation of fine vessels is improved by adding a self-attention mechanism to improve attention to vessel edge features and the terminal fine vessels. Non-strided convolution and non-pooled downsampling methods are also used to avoid losing fine-grained information and learning less effective feature representations. The performance of multi-class blood vessel segmentation is as follows, per test results on the DRIVE dataset: F1-score (F1) has a value of 0.7496 and an accuracy of 0.9820. The accuracy of A/V categorization has increased by 1.35% when compared to AU-Net. The outcomes demonstrate that by enhancing the baseline U-Net, the strategy we suggested enhances the automated classification and segmentation of blood vessels.
期刊介绍:
The International Journal of Imaging Systems and Technology (IMA) is a forum for the exchange of ideas and results relevant to imaging systems, including imaging physics and informatics. The journal covers all imaging modalities in humans and animals.
IMA accepts technically sound and scientifically rigorous research in the interdisciplinary field of imaging, including relevant algorithmic research and hardware and software development, and their applications relevant to medical research. The journal provides a platform to publish original research in structural and functional imaging.
The journal is also open to imaging studies of the human body and on animals that describe novel diagnostic imaging and analyses methods. Technical, theoretical, and clinical research in both normal and clinical populations is encouraged. Submissions describing methods, software, databases, replication studies as well as negative results are also considered.
The scope of the journal includes, but is not limited to, the following in the context of biomedical research:
Imaging and neuro-imaging modalities: structural MRI, functional MRI, PET, SPECT, CT, ultrasound, EEG, MEG, NIRS etc.;
Neuromodulation and brain stimulation techniques such as TMS and tDCS;
Software and hardware for imaging, especially related to human and animal health;
Image segmentation in normal and clinical populations;
Pattern analysis and classification using machine learning techniques;
Computational modeling and analysis;
Brain connectivity and connectomics;
Systems-level characterization of brain function;
Neural networks and neurorobotics;
Computer vision, based on human/animal physiology;
Brain-computer interface (BCI) technology;
Big data, databasing and data mining.