{"title":"导电流体中的流体-刚体相互作用模型","authors":"Jan Scherz, Anja Schlömerkemper","doi":"10.1002/gamm.202470012","DOIUrl":null,"url":null,"abstract":"<p>We derive a mathematical model for the motion of several insulating rigid bodies through an electrically conducting fluid. Starting from a universal model describing this phenomenon in generality, we elaborate (simplifying) physical assumptions under which a mathematical analysis of the model becomes feasible. Our main focus lies on the derivation of the boundary and interface conditions for the electromagnetic fields as well as the derivation of the magnetohydrodynamic approximation carried out via a nondimensionalization of the system.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"47 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202470012","citationCount":"0","resultStr":"{\"title\":\"Modeling of fluid-rigid body interaction in an electrically conducting fluid\",\"authors\":\"Jan Scherz, Anja Schlömerkemper\",\"doi\":\"10.1002/gamm.202470012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We derive a mathematical model for the motion of several insulating rigid bodies through an electrically conducting fluid. Starting from a universal model describing this phenomenon in generality, we elaborate (simplifying) physical assumptions under which a mathematical analysis of the model becomes feasible. Our main focus lies on the derivation of the boundary and interface conditions for the electromagnetic fields as well as the derivation of the magnetohydrodynamic approximation carried out via a nondimensionalization of the system.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"47 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/gamm.202470012\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202470012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202470012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Modeling of fluid-rigid body interaction in an electrically conducting fluid
We derive a mathematical model for the motion of several insulating rigid bodies through an electrically conducting fluid. Starting from a universal model describing this phenomenon in generality, we elaborate (simplifying) physical assumptions under which a mathematical analysis of the model becomes feasible. Our main focus lies on the derivation of the boundary and interface conditions for the electromagnetic fields as well as the derivation of the magnetohydrodynamic approximation carried out via a nondimensionalization of the system.