{"title":"从基本元素视角重温高阶张量奇异值分解","authors":"Sheng Liu;Xi-Le Zhao;Jinsong Leng;Ben-Zheng Li;Jing-Hua Yang;Xinyu Chen","doi":"10.1109/TSP.2024.3454115","DOIUrl":null,"url":null,"abstract":"Recently, tensor singular value decomposition (t-SVD), based on the tensor-tensor product (t-product), has become a powerful tool for processing third-order tensor data. However, constrained by the fact that the basic element is the fiber (i.e., vector) in the t-product, higher-order tensor data (i.e., order \n<inline-formula><tex-math>$d>3$</tex-math></inline-formula>\n) are usually unfolded into third-order tensors to satisfy the classical t-product setting, which leads to the destroying of high-dimensional structure. By revisiting the basic element in the t-product, we suggest a generalized t-product called element-based tensor-tensor product (elt-product) as an alternative of the classic t-product, where the basic element is a \n<inline-formula><tex-math>$(d-2)$</tex-math></inline-formula>\nth-order tensor instead of a vector. The benefit of the elt-product is that it can better preserve high-dimensional structures and that it can explore more complex interactions via higher-order convolution instead of first-order convolution in classic t-product. Starting from the elt-product, we develop new tensor-SVD and low-rank tensor metrics (e.g., rank and nuclear norm). Equipped with the suggested metrics, we present a tensor completion model for high-order tensor data and prove the exact recovery guarantees. To harness the resulting nonconvex optimization problem, we apply an alternating direction method of the multiplier (ADMM) algorithm with a theoretical convergence guarantee. Extensive experimental results on the simulated and real-world data (color videos, light-field images, light-field videos, and traffic data) demonstrate the superiority of the proposed model against the state-of-the-art baseline models.","PeriodicalId":13330,"journal":{"name":"IEEE Transactions on Signal Processing","volume":"72 ","pages":"4589-4603"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revisiting High-Order Tensor Singular Value Decomposition From Basic Element Perspective\",\"authors\":\"Sheng Liu;Xi-Le Zhao;Jinsong Leng;Ben-Zheng Li;Jing-Hua Yang;Xinyu Chen\",\"doi\":\"10.1109/TSP.2024.3454115\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, tensor singular value decomposition (t-SVD), based on the tensor-tensor product (t-product), has become a powerful tool for processing third-order tensor data. However, constrained by the fact that the basic element is the fiber (i.e., vector) in the t-product, higher-order tensor data (i.e., order \\n<inline-formula><tex-math>$d>3$</tex-math></inline-formula>\\n) are usually unfolded into third-order tensors to satisfy the classical t-product setting, which leads to the destroying of high-dimensional structure. By revisiting the basic element in the t-product, we suggest a generalized t-product called element-based tensor-tensor product (elt-product) as an alternative of the classic t-product, where the basic element is a \\n<inline-formula><tex-math>$(d-2)$</tex-math></inline-formula>\\nth-order tensor instead of a vector. The benefit of the elt-product is that it can better preserve high-dimensional structures and that it can explore more complex interactions via higher-order convolution instead of first-order convolution in classic t-product. Starting from the elt-product, we develop new tensor-SVD and low-rank tensor metrics (e.g., rank and nuclear norm). Equipped with the suggested metrics, we present a tensor completion model for high-order tensor data and prove the exact recovery guarantees. To harness the resulting nonconvex optimization problem, we apply an alternating direction method of the multiplier (ADMM) algorithm with a theoretical convergence guarantee. Extensive experimental results on the simulated and real-world data (color videos, light-field images, light-field videos, and traffic data) demonstrate the superiority of the proposed model against the state-of-the-art baseline models.\",\"PeriodicalId\":13330,\"journal\":{\"name\":\"IEEE Transactions on Signal Processing\",\"volume\":\"72 \",\"pages\":\"4589-4603\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Signal Processing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10665981/\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10665981/","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Revisiting High-Order Tensor Singular Value Decomposition From Basic Element Perspective
Recently, tensor singular value decomposition (t-SVD), based on the tensor-tensor product (t-product), has become a powerful tool for processing third-order tensor data. However, constrained by the fact that the basic element is the fiber (i.e., vector) in the t-product, higher-order tensor data (i.e., order
$d>3$
) are usually unfolded into third-order tensors to satisfy the classical t-product setting, which leads to the destroying of high-dimensional structure. By revisiting the basic element in the t-product, we suggest a generalized t-product called element-based tensor-tensor product (elt-product) as an alternative of the classic t-product, where the basic element is a
$(d-2)$
th-order tensor instead of a vector. The benefit of the elt-product is that it can better preserve high-dimensional structures and that it can explore more complex interactions via higher-order convolution instead of first-order convolution in classic t-product. Starting from the elt-product, we develop new tensor-SVD and low-rank tensor metrics (e.g., rank and nuclear norm). Equipped with the suggested metrics, we present a tensor completion model for high-order tensor data and prove the exact recovery guarantees. To harness the resulting nonconvex optimization problem, we apply an alternating direction method of the multiplier (ADMM) algorithm with a theoretical convergence guarantee. Extensive experimental results on the simulated and real-world data (color videos, light-field images, light-field videos, and traffic data) demonstrate the superiority of the proposed model against the state-of-the-art baseline models.
期刊介绍:
The IEEE Transactions on Signal Processing covers novel theory, algorithms, performance analyses and applications of techniques for the processing, understanding, learning, retrieval, mining, and extraction of information from signals. The term “signal” includes, among others, audio, video, speech, image, communication, geophysical, sonar, radar, medical and musical signals. Examples of topics of interest include, but are not limited to, information processing and the theory and application of filtering, coding, transmitting, estimating, detecting, analyzing, recognizing, synthesizing, recording, and reproducing signals.