Cameron Y Park, Shouvik Mani, Nicolas Beltran-Velez, Katie Maurer, Teddy Huang, Shuqiang Li, Satyen Gohil, Kenneth J Livak, David A Knowles, Catherine J Wu, Elham Azizi
{"title":"从时间序列单细胞数据推断细胞间动态相互作用的贝叶斯框架","authors":"Cameron Y Park, Shouvik Mani, Nicolas Beltran-Velez, Katie Maurer, Teddy Huang, Shuqiang Li, Satyen Gohil, Kenneth J Livak, David A Knowles, Catherine J Wu, Elham Azizi","doi":"10.1101/gr.279126.124","DOIUrl":null,"url":null,"abstract":"Characterizing cell-cell communication and tracking its variability over time are crucial for understanding the coordination of biological processes mediating normal development, disease progression, and responses to perturbations such as therapies. Existing tools fail to capture time-dependent intercellular interactions, and primarily rely on existing databases compiled from limited contexts. We introduce DIISCO, a Bayesian framework designed to characterize the temporal dynamics of cellular interactions using single-cell RNA sequencing data from multiple time points. Our method utilizes structured Gaussian process regression to unveil time-resolved interactions among diverse cell types according to their coevolution and incorporates prior knowledge of receptor-ligand complexes. We show the interpretability of DIISCO in simulated data and new data collected from T cells co-cultured with lymphoma cells, demonstrating its potential to uncover dynamic cell-cell crosstalk.","PeriodicalId":12678,"journal":{"name":"Genome research","volume":"8 1","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bayesian framework for inferring dynamic intercellular interactions from time-series single-cell data\",\"authors\":\"Cameron Y Park, Shouvik Mani, Nicolas Beltran-Velez, Katie Maurer, Teddy Huang, Shuqiang Li, Satyen Gohil, Kenneth J Livak, David A Knowles, Catherine J Wu, Elham Azizi\",\"doi\":\"10.1101/gr.279126.124\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Characterizing cell-cell communication and tracking its variability over time are crucial for understanding the coordination of biological processes mediating normal development, disease progression, and responses to perturbations such as therapies. Existing tools fail to capture time-dependent intercellular interactions, and primarily rely on existing databases compiled from limited contexts. We introduce DIISCO, a Bayesian framework designed to characterize the temporal dynamics of cellular interactions using single-cell RNA sequencing data from multiple time points. Our method utilizes structured Gaussian process regression to unveil time-resolved interactions among diverse cell types according to their coevolution and incorporates prior knowledge of receptor-ligand complexes. We show the interpretability of DIISCO in simulated data and new data collected from T cells co-cultured with lymphoma cells, demonstrating its potential to uncover dynamic cell-cell crosstalk.\",\"PeriodicalId\":12678,\"journal\":{\"name\":\"Genome research\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1101/gr.279126.124\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1101/gr.279126.124","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
表征细胞-细胞通讯并跟踪其随时间的变化,对于了解介导正常发育、疾病进展和对疗法等干扰的反应的生物过程的协调至关重要。现有的工具无法捕捉随时间变化的细胞间相互作用,而且主要依赖于从有限的环境中汇编的现有数据库。我们介绍了 DIISCO,这是一个贝叶斯框架,旨在利用多个时间点的单细胞 RNA 测序数据描述细胞间相互作用的时间动态。我们的方法利用结构化高斯过程回归,根据不同细胞类型的共同进化揭示它们之间时间分辨的相互作用,并结合受体配体复合物的先验知识。我们在模拟数据和从与淋巴瘤细胞共培养的 T 细胞收集的新数据中展示了 DIISCO 的可解释性,证明了它揭示动态细胞间串扰的潜力。
A Bayesian framework for inferring dynamic intercellular interactions from time-series single-cell data
Characterizing cell-cell communication and tracking its variability over time are crucial for understanding the coordination of biological processes mediating normal development, disease progression, and responses to perturbations such as therapies. Existing tools fail to capture time-dependent intercellular interactions, and primarily rely on existing databases compiled from limited contexts. We introduce DIISCO, a Bayesian framework designed to characterize the temporal dynamics of cellular interactions using single-cell RNA sequencing data from multiple time points. Our method utilizes structured Gaussian process regression to unveil time-resolved interactions among diverse cell types according to their coevolution and incorporates prior knowledge of receptor-ligand complexes. We show the interpretability of DIISCO in simulated data and new data collected from T cells co-cultured with lymphoma cells, demonstrating its potential to uncover dynamic cell-cell crosstalk.
期刊介绍:
Launched in 1995, Genome Research is an international, continuously published, peer-reviewed journal that focuses on research that provides novel insights into the genome biology of all organisms, including advances in genomic medicine.
Among the topics considered by the journal are genome structure and function, comparative genomics, molecular evolution, genome-scale quantitative and population genetics, proteomics, epigenomics, and systems biology. The journal also features exciting gene discoveries and reports of cutting-edge computational biology and high-throughput methodologies.
New data in these areas are published as research papers, or methods and resource reports that provide novel information on technologies or tools that will be of interest to a broad readership. Complete data sets are presented electronically on the journal''s web site where appropriate. The journal also provides Reviews, Perspectives, and Insight/Outlook articles, which present commentary on the latest advances published both here and elsewhere, placing such progress in its broader biological context.