{"title":"姜黄素对长期暴露于毒死蜱的雄性大鼠肾毒性的保护作用","authors":"Tahereh Farkhondeh, Babak Roshanravan, Fariborz Samini, Saeed Samarghandian","doi":"10.2174/0113892010307571240817190846","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Organophosphorus insecticides, widely used in farming and agriculture, have been associated with various health issues. Curcumin, a natural antioxidant, has shown potential in mitigating the adverse effects induced by these insecticides.</p><p><strong>Aim: </strong>This study aimed to evaluate the nephroprotective effects of Curcumin (CUR) against Chlorpyrifos (CPF)-induced renal damage.</p><p><strong>Method: </strong>Forty male Wistar albino rats were randomly assigned to five groups, each containing eight rats: control (0.5 mL of olive oil, the solvent for chlorpyrifos), CPF (10 mg/kg of chlorpyrifos), CPF + CUR 25 mg/kg/day, CPF + CUR 50 mg/kg/day, and CPF + CUR 100 mg/k/day. All groups were treated for 90 days. Finally, kidney tissue was assessed for oxidative stress, inflammatory markers, and histopathological changes.</p><p><strong>Result: </strong>A considerable elevation in urea and Creatinine (Cr) concentrations was observed in the CPF group compared to the control rats (p < 0.01). CUR decreased creatinine and urea levels in the CPF-exposed group compared to the non-CUR-treated animals (p < 0.05). Additionally, the concentrations of NO, MDA, IL-6, IL-1β, and TNFα were significantly increased in the kidneys of the CPF-induced rats compared to the controls (p < 0.001). However, CUR (100 mg/kg) administration significantly reduced the abovementioned parameters in rat kidneys (p < 0.01). CUR (100 mg/kg) also increased superoxide dismutase activity and glutathione concentration in the kidneys of CPF-exposed animals compared to non-CUR-treated rats (p < 0.05). Histopathological analysis revealed severe congestion in the kidney tissue after CPF exposure. However, coadministration of CUR restored the normal structure of the kidney in the experimental rats.</p><p><strong>Conclusion: </strong>Our findings suggest that curcumin, a potent antioxidant, can help alleviate chlorpyrifos-induced nephrotoxicity.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Protective Effects of Curcumin against Nephrotoxicity in Male Rats after Chronic Exposure to Chlorpyrifos.\",\"authors\":\"Tahereh Farkhondeh, Babak Roshanravan, Fariborz Samini, Saeed Samarghandian\",\"doi\":\"10.2174/0113892010307571240817190846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Organophosphorus insecticides, widely used in farming and agriculture, have been associated with various health issues. Curcumin, a natural antioxidant, has shown potential in mitigating the adverse effects induced by these insecticides.</p><p><strong>Aim: </strong>This study aimed to evaluate the nephroprotective effects of Curcumin (CUR) against Chlorpyrifos (CPF)-induced renal damage.</p><p><strong>Method: </strong>Forty male Wistar albino rats were randomly assigned to five groups, each containing eight rats: control (0.5 mL of olive oil, the solvent for chlorpyrifos), CPF (10 mg/kg of chlorpyrifos), CPF + CUR 25 mg/kg/day, CPF + CUR 50 mg/kg/day, and CPF + CUR 100 mg/k/day. All groups were treated for 90 days. Finally, kidney tissue was assessed for oxidative stress, inflammatory markers, and histopathological changes.</p><p><strong>Result: </strong>A considerable elevation in urea and Creatinine (Cr) concentrations was observed in the CPF group compared to the control rats (p < 0.01). CUR decreased creatinine and urea levels in the CPF-exposed group compared to the non-CUR-treated animals (p < 0.05). Additionally, the concentrations of NO, MDA, IL-6, IL-1β, and TNFα were significantly increased in the kidneys of the CPF-induced rats compared to the controls (p < 0.001). However, CUR (100 mg/kg) administration significantly reduced the abovementioned parameters in rat kidneys (p < 0.01). CUR (100 mg/kg) also increased superoxide dismutase activity and glutathione concentration in the kidneys of CPF-exposed animals compared to non-CUR-treated rats (p < 0.05). Histopathological analysis revealed severe congestion in the kidney tissue after CPF exposure. However, coadministration of CUR restored the normal structure of the kidney in the experimental rats.</p><p><strong>Conclusion: </strong>Our findings suggest that curcumin, a potent antioxidant, can help alleviate chlorpyrifos-induced nephrotoxicity.</p>\",\"PeriodicalId\":10881,\"journal\":{\"name\":\"Current pharmaceutical biotechnology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current pharmaceutical biotechnology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892010307571240817190846\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010307571240817190846","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
背景:有机磷杀虫剂广泛应用于农业生产,与各种健康问题有关。目的:本研究旨在评估姜黄素(CUR)对毒死蜱(CPF)诱导的肾损伤的保护作用:将40只雄性Wistar白化大鼠随机分为5组,每组8只:对照组(0.5 mL橄榄油,毒死蜱的溶剂)、CPF组(10 mg/kg毒死蜱)、CPF + CUR 25 mg/kg/天组、CPF + CUR 50 mg/kg/天组和CPF + CUR 100 mg/k/天组。所有组别均治疗 90 天。最后,对肾组织的氧化应激、炎症指标和组织病理学变化进行了评估:结果:与对照组相比,CPF 组大鼠的尿素和肌酐(Cr)浓度显著升高(p < 0.01)。与未经 CUR 处理的动物相比,CPF 暴露组的肌酐和尿素水平有所下降(p < 0.05)。此外,与对照组相比,CPF 诱导的大鼠肾脏中 NO、MDA、IL-6、IL-1β 和 TNFα 的浓度显著增加(p < 0.001)。然而,服用 CUR(100 毫克/千克)可明显降低大鼠肾脏的上述参数(p < 0.01)。与未施用 CUR 的大鼠相比,施用 CUR(100 毫克/千克)还能提高暴露于氯化石蜡的动物肾脏中的超氧化物歧化酶活性和谷胱甘肽浓度(p < 0.05)。组织病理学分析表明,接触氯化石蜡后,肾组织严重充血。结论:我们的研究结果表明,姜黄素、姜黄酚、姜黄酰胺和姜黄皂苷可以抑制氯化石蜡对肾脏的损害:我们的研究结果表明,姜黄素是一种强效抗氧化剂,有助于减轻毒死蜱引起的肾毒性。
Protective Effects of Curcumin against Nephrotoxicity in Male Rats after Chronic Exposure to Chlorpyrifos.
Background: Organophosphorus insecticides, widely used in farming and agriculture, have been associated with various health issues. Curcumin, a natural antioxidant, has shown potential in mitigating the adverse effects induced by these insecticides.
Aim: This study aimed to evaluate the nephroprotective effects of Curcumin (CUR) against Chlorpyrifos (CPF)-induced renal damage.
Method: Forty male Wistar albino rats were randomly assigned to five groups, each containing eight rats: control (0.5 mL of olive oil, the solvent for chlorpyrifos), CPF (10 mg/kg of chlorpyrifos), CPF + CUR 25 mg/kg/day, CPF + CUR 50 mg/kg/day, and CPF + CUR 100 mg/k/day. All groups were treated for 90 days. Finally, kidney tissue was assessed for oxidative stress, inflammatory markers, and histopathological changes.
Result: A considerable elevation in urea and Creatinine (Cr) concentrations was observed in the CPF group compared to the control rats (p < 0.01). CUR decreased creatinine and urea levels in the CPF-exposed group compared to the non-CUR-treated animals (p < 0.05). Additionally, the concentrations of NO, MDA, IL-6, IL-1β, and TNFα were significantly increased in the kidneys of the CPF-induced rats compared to the controls (p < 0.001). However, CUR (100 mg/kg) administration significantly reduced the abovementioned parameters in rat kidneys (p < 0.01). CUR (100 mg/kg) also increased superoxide dismutase activity and glutathione concentration in the kidneys of CPF-exposed animals compared to non-CUR-treated rats (p < 0.05). Histopathological analysis revealed severe congestion in the kidney tissue after CPF exposure. However, coadministration of CUR restored the normal structure of the kidney in the experimental rats.
Conclusion: Our findings suggest that curcumin, a potent antioxidant, can help alleviate chlorpyrifos-induced nephrotoxicity.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.