David C Klonoff, Alessandra T Ayers, Cindy N Ho, Chiara Fabris, María Fernanda Villa-Tamayo, Eleanor Allen, Eda Cengiz, Laya Ekhlaspour, Jenise C Wong, Lutz Heineman, Michael A Kohn
{"title":"胰岛素泵闭塞后出现中度和严重高血糖及酮血症的时间。","authors":"David C Klonoff, Alessandra T Ayers, Cindy N Ho, Chiara Fabris, María Fernanda Villa-Tamayo, Eleanor Allen, Eda Cengiz, Laya Ekhlaspour, Jenise C Wong, Lutz Heineman, Michael A Kohn","doi":"10.1177/19322968241280386","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Insulin pump therapy can be adversely affected by interruption of insulin flow, leading to a rise in blood glucose (BG) and subsequently of blood beta-hydroxybutyrate (BHB) ketone levels.</p><p><strong>Methods: </strong>We performed a PubMed search for English language reports (January 1982 to July 2024) estimating the rate of rise in BG and/or BHB after ≥ 60 minutes of interruption of continuous subcutaneous insulin infusion (CSII) in persons with type 1 diabetes (PwT1D). We also simulated the rise in BG in a virtual population of 100 adults with T1D following suspension of continuous subcutaneous insulin infusion.</p><p><strong>Results: </strong>We identified eight relevant studies where BG and BHB (seven of these eight studies) were measured following suspension of CSII as a model for occlusion. After 60 minutes post-suspension, the mean extracted rates of rise averaged 0.62 mg/dL/min (37 mg/dL/h) for BG and 0.0038 mmol/L/min (0.20 mmol/L/h) for BHB. Mean estimated time to moderately/severely elevated BG (300/400 mg/dL) or BHB (1.6/3.0 mmol/L) was, respectively, 5.8/8.5 and 8.0/14.2 hours. The simulation model predicted moderately/severely elevated BG (300/400 mg/dL) after 9.25/12, 6.75/8.75, and 4.75/5.75 hours in the virtual subjects post-interruption with small (5th percentile), medium (50th percentile), and large (95th percentile) hyperglycemic changes.</p><p><strong>Discussion: </strong>Clinical studies and a simulation model similarly predicted that, following CSII interruption, moderate/severe hyperglycemia can occur within 5-9/6-14 hours, and clinical studies predicted that moderate/severe ketonemia can occur within 7-12/13-21 hours. Patients and clinicians should be aware of this timing when considering the risks of developing metabolic complications after insulin pump occlusion.</p>","PeriodicalId":15475,"journal":{"name":"Journal of Diabetes Science and Technology","volume":" ","pages":"1472-1479"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531023/pdf/","citationCount":"0","resultStr":"{\"title\":\"Time to Moderate and Severe Hyperglycemia and Ketonemia Following an Insulin Pump Occlusion.\",\"authors\":\"David C Klonoff, Alessandra T Ayers, Cindy N Ho, Chiara Fabris, María Fernanda Villa-Tamayo, Eleanor Allen, Eda Cengiz, Laya Ekhlaspour, Jenise C Wong, Lutz Heineman, Michael A Kohn\",\"doi\":\"10.1177/19322968241280386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Introduction: </strong>Insulin pump therapy can be adversely affected by interruption of insulin flow, leading to a rise in blood glucose (BG) and subsequently of blood beta-hydroxybutyrate (BHB) ketone levels.</p><p><strong>Methods: </strong>We performed a PubMed search for English language reports (January 1982 to July 2024) estimating the rate of rise in BG and/or BHB after ≥ 60 minutes of interruption of continuous subcutaneous insulin infusion (CSII) in persons with type 1 diabetes (PwT1D). We also simulated the rise in BG in a virtual population of 100 adults with T1D following suspension of continuous subcutaneous insulin infusion.</p><p><strong>Results: </strong>We identified eight relevant studies where BG and BHB (seven of these eight studies) were measured following suspension of CSII as a model for occlusion. After 60 minutes post-suspension, the mean extracted rates of rise averaged 0.62 mg/dL/min (37 mg/dL/h) for BG and 0.0038 mmol/L/min (0.20 mmol/L/h) for BHB. Mean estimated time to moderately/severely elevated BG (300/400 mg/dL) or BHB (1.6/3.0 mmol/L) was, respectively, 5.8/8.5 and 8.0/14.2 hours. The simulation model predicted moderately/severely elevated BG (300/400 mg/dL) after 9.25/12, 6.75/8.75, and 4.75/5.75 hours in the virtual subjects post-interruption with small (5th percentile), medium (50th percentile), and large (95th percentile) hyperglycemic changes.</p><p><strong>Discussion: </strong>Clinical studies and a simulation model similarly predicted that, following CSII interruption, moderate/severe hyperglycemia can occur within 5-9/6-14 hours, and clinical studies predicted that moderate/severe ketonemia can occur within 7-12/13-21 hours. Patients and clinicians should be aware of this timing when considering the risks of developing metabolic complications after insulin pump occlusion.</p>\",\"PeriodicalId\":15475,\"journal\":{\"name\":\"Journal of Diabetes Science and Technology\",\"volume\":\" \",\"pages\":\"1472-1479\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11531023/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Diabetes Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/19322968241280386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Diabetes Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/19322968241280386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Time to Moderate and Severe Hyperglycemia and Ketonemia Following an Insulin Pump Occlusion.
Introduction: Insulin pump therapy can be adversely affected by interruption of insulin flow, leading to a rise in blood glucose (BG) and subsequently of blood beta-hydroxybutyrate (BHB) ketone levels.
Methods: We performed a PubMed search for English language reports (January 1982 to July 2024) estimating the rate of rise in BG and/or BHB after ≥ 60 minutes of interruption of continuous subcutaneous insulin infusion (CSII) in persons with type 1 diabetes (PwT1D). We also simulated the rise in BG in a virtual population of 100 adults with T1D following suspension of continuous subcutaneous insulin infusion.
Results: We identified eight relevant studies where BG and BHB (seven of these eight studies) were measured following suspension of CSII as a model for occlusion. After 60 minutes post-suspension, the mean extracted rates of rise averaged 0.62 mg/dL/min (37 mg/dL/h) for BG and 0.0038 mmol/L/min (0.20 mmol/L/h) for BHB. Mean estimated time to moderately/severely elevated BG (300/400 mg/dL) or BHB (1.6/3.0 mmol/L) was, respectively, 5.8/8.5 and 8.0/14.2 hours. The simulation model predicted moderately/severely elevated BG (300/400 mg/dL) after 9.25/12, 6.75/8.75, and 4.75/5.75 hours in the virtual subjects post-interruption with small (5th percentile), medium (50th percentile), and large (95th percentile) hyperglycemic changes.
Discussion: Clinical studies and a simulation model similarly predicted that, following CSII interruption, moderate/severe hyperglycemia can occur within 5-9/6-14 hours, and clinical studies predicted that moderate/severe ketonemia can occur within 7-12/13-21 hours. Patients and clinicians should be aware of this timing when considering the risks of developing metabolic complications after insulin pump occlusion.
期刊介绍:
The Journal of Diabetes Science and Technology (JDST) is a bi-monthly, peer-reviewed scientific journal published by the Diabetes Technology Society. JDST covers scientific and clinical aspects of diabetes technology including glucose monitoring, insulin and metabolic peptide delivery, the artificial pancreas, digital health, precision medicine, social media, cybersecurity, software for modeling, physiologic monitoring, technology for managing obesity, and diagnostic tests of glycation. The journal also covers the development and use of mobile applications and wireless communication, as well as bioengineered tools such as MEMS, new biomaterials, and nanotechnology to develop new sensors. Articles in JDST cover both basic research and clinical applications of technologies being developed to help people with diabetes.