Raphaël Jeger-Madiot, Delphine Planas, Isabelle Staropoli, Hippolyte Debarnot, Jérôme Kervevan, Héloïse Mary, Camilla Collina, Barbara F Fonseca, Rémy Robinot, Stacy Gellenoncourt, Olivier Schwartz, Lorna Ewart, Michael Bscheider, Samy Gobaa, Lisa A Chakrabarti
{"title":"在淋巴器官芯片中模拟记忆性 B 细胞反应,以评估 mRNA 疫苗的增效作用。","authors":"Raphaël Jeger-Madiot, Delphine Planas, Isabelle Staropoli, Hippolyte Debarnot, Jérôme Kervevan, Héloïse Mary, Camilla Collina, Barbara F Fonseca, Rémy Robinot, Stacy Gellenoncourt, Olivier Schwartz, Lorna Ewart, Michael Bscheider, Samy Gobaa, Lisa A Chakrabarti","doi":"10.1084/jem.20240289","DOIUrl":null,"url":null,"abstract":"<p><p>Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a lymphoid organ-chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 spike protein mimicked a vaccine boost by inducing a massive amplification of spike-specific memory B cells, plasmablast differentiation, and spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine-boosting strategies.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"221 10","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383861/pdf/","citationCount":"0","resultStr":"{\"title\":\"Modeling memory B cell responses in a lymphoid organ-chip to evaluate mRNA vaccine boosting.\",\"authors\":\"Raphaël Jeger-Madiot, Delphine Planas, Isabelle Staropoli, Hippolyte Debarnot, Jérôme Kervevan, Héloïse Mary, Camilla Collina, Barbara F Fonseca, Rémy Robinot, Stacy Gellenoncourt, Olivier Schwartz, Lorna Ewart, Michael Bscheider, Samy Gobaa, Lisa A Chakrabarti\",\"doi\":\"10.1084/jem.20240289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a lymphoid organ-chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 spike protein mimicked a vaccine boost by inducing a massive amplification of spike-specific memory B cells, plasmablast differentiation, and spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine-boosting strategies.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"221 10\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11383861/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20240289\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20240289","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
预测候选疫苗在人体中的免疫原性仍然是一项挑战。为了解决这个问题,我们开发了一种淋巴器官芯片(LO 芯片)模型,该模型基于在三维胶原基质中高密度播种人 PBMC 的微流控芯片。灌注 SARS-CoV-2 穗状病毒蛋白可诱导穗状病毒特异性记忆 B 细胞大量扩增、浆细胞分化和穗状病毒特异性抗体分泌,从而模拟疫苗强化。LO 芯片再现了淋巴组织的特征,包括活化的 CD4+ T 细胞/B 细胞集群的形成和成熟浆细胞的移出。重要的是,髓系细胞能捕获和表达由脂质纳米颗粒载体的mRNA,从而能评估对mRNA疫苗的反应。比较芯片上对武汉单价和武汉/奥美康二价mRNA疫苗的反应显示,奥美康中和抗体的诱导效果相当,这表明免疫印记与体内报道的一样。因此,LO 芯片是一个适用于疫苗增强策略临床前评估的多功能平台。
Modeling memory B cell responses in a lymphoid organ-chip to evaluate mRNA vaccine boosting.
Predicting the immunogenicity of candidate vaccines in humans remains a challenge. To address this issue, we developed a lymphoid organ-chip (LO chip) model based on a microfluidic chip seeded with human PBMC at high density within a 3D collagen matrix. Perfusion of the SARS-CoV-2 spike protein mimicked a vaccine boost by inducing a massive amplification of spike-specific memory B cells, plasmablast differentiation, and spike-specific antibody secretion. Features of lymphoid tissue, including the formation of activated CD4+ T cell/B cell clusters and the emigration of matured plasmablasts, were recapitulated in the LO chip. Importantly, myeloid cells were competent at capturing and expressing mRNA vectored by lipid nanoparticles, enabling the assessment of responses to mRNA vaccines. Comparison of on-chip responses to Wuhan monovalent and Wuhan/Omicron bivalent mRNA vaccine boosts showed equivalent induction of Omicron neutralizing antibodies, pointing at immune imprinting as reported in vivo. The LO chip thus represents a versatile platform suited to the preclinical evaluation of vaccine-boosting strategies.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.