使用多重液滴数字 PCR 检测法同时检测八种癌症类型。

IF 6.6 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Molecular Oncology Pub Date : 2024-09-06 DOI:10.1002/1878-0261.13708
Isabelle Neefs, Nele De Meulenaere, Thomas Vanpoucke, Janah Vandenhoeck, Dieter Peeters, Marc Peeters, Guy Van Camp, Ken Op de Beeck
{"title":"使用多重液滴数字 PCR 检测法同时检测八种癌症类型。","authors":"Isabelle Neefs, Nele De Meulenaere, Thomas Vanpoucke, Janah Vandenhoeck, Dieter Peeters, Marc Peeters, Guy Van Camp, Ken Op de Beeck","doi":"10.1002/1878-0261.13708","DOIUrl":null,"url":null,"abstract":"<p><p>DNA methylation biomarkers have emerged as promising tools for cancer detection. Common methylation patterns across tumor types allow multi-cancer detection. Droplet digital PCR (ddPCR) has gained considerable attention for methylation detection. However, multi-cancer detection using multiple targets in ddPCR has never been performed before. Therefore, we developed a multiplex ddPCR assay for multi-cancer detection. Based on previous data analyses using The Cancer Genome Atlas (TCGA), we selected differentially methylated targets for eight frequent tumor types (lung, breast, colorectal, prostate, pancreatic, head and neck, liver, and esophageal cancer). Three targets were validated using ddPCR in 103 tumor and 109 normal adjacent fresh frozen samples. Two distinct ddPCR assays were successfully developed. Output data from both assays is combined to obtain a read-out from the three targets together. Our overall ddPCR assay has a cross-validated area under the curve (cvAUC) of 0.948. Performance between distinct cancer types varies, with sensitivities ranging from 53.8% to 100% and specificities ranging from 80% to 100%. Compared to previously published single-target parameters, we show that combining targets can drastically increase sensitivity and specificity, while lowering DNA input. In conclusion, we are the first to report a multi-cancer methylation ddPCR assay, which allows for highly accurate tumor predictions.</p>","PeriodicalId":18764,"journal":{"name":"Molecular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simultaneous detection of eight cancer types using a multiplex droplet digital PCR assay.\",\"authors\":\"Isabelle Neefs, Nele De Meulenaere, Thomas Vanpoucke, Janah Vandenhoeck, Dieter Peeters, Marc Peeters, Guy Van Camp, Ken Op de Beeck\",\"doi\":\"10.1002/1878-0261.13708\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>DNA methylation biomarkers have emerged as promising tools for cancer detection. Common methylation patterns across tumor types allow multi-cancer detection. Droplet digital PCR (ddPCR) has gained considerable attention for methylation detection. However, multi-cancer detection using multiple targets in ddPCR has never been performed before. Therefore, we developed a multiplex ddPCR assay for multi-cancer detection. Based on previous data analyses using The Cancer Genome Atlas (TCGA), we selected differentially methylated targets for eight frequent tumor types (lung, breast, colorectal, prostate, pancreatic, head and neck, liver, and esophageal cancer). Three targets were validated using ddPCR in 103 tumor and 109 normal adjacent fresh frozen samples. Two distinct ddPCR assays were successfully developed. Output data from both assays is combined to obtain a read-out from the three targets together. Our overall ddPCR assay has a cross-validated area under the curve (cvAUC) of 0.948. Performance between distinct cancer types varies, with sensitivities ranging from 53.8% to 100% and specificities ranging from 80% to 100%. Compared to previously published single-target parameters, we show that combining targets can drastically increase sensitivity and specificity, while lowering DNA input. In conclusion, we are the first to report a multi-cancer methylation ddPCR assay, which allows for highly accurate tumor predictions.</p>\",\"PeriodicalId\":18764,\"journal\":{\"name\":\"Molecular Oncology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/1878-0261.13708\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Biochemistry, Genetics and Molecular Biology\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/1878-0261.13708","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

摘要

DNA 甲基化生物标志物已成为一种很有前途的癌症检测工具。不同类型肿瘤的共同甲基化模式可用于多种癌症检测。液滴数字 PCR(ddPCR)在甲基化检测方面已经获得了相当多的关注。然而,在 ddPCR 中使用多靶点进行多癌症检测还从未有过。因此,我们开发了一种用于多癌检测的多重 ddPCR 检测方法。根据之前使用癌症基因组图谱(TCGA)进行的数据分析,我们选择了八种常见肿瘤类型(肺癌、乳腺癌、结直肠癌、前列腺癌、胰腺癌、头颈部癌、肝癌和食管癌)的不同甲基化靶点。在 103 个肿瘤样本和 109 个邻近的正常新鲜冷冻样本中使用 ddPCR 验证了三个靶点。成功开发了两种不同的 ddPCR 检测方法。两种检测方法的输出数据合并在一起,可获得三个靶点的读数。我们的整体 ddPCR 检测的交叉验证曲线下面积(cvAUC)为 0.948。不同癌症类型之间的性能各不相同,灵敏度从 53.8% 到 100% 不等,特异性从 80% 到 100% 不等。与之前公布的单一靶标参数相比,我们发现结合靶标可以大幅提高灵敏度和特异性,同时降低 DNA 输入。总之,我们首次报道了一种多癌症甲基化 ddPCR 检测方法,该方法可实现高度准确的肿瘤预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Simultaneous detection of eight cancer types using a multiplex droplet digital PCR assay.

DNA methylation biomarkers have emerged as promising tools for cancer detection. Common methylation patterns across tumor types allow multi-cancer detection. Droplet digital PCR (ddPCR) has gained considerable attention for methylation detection. However, multi-cancer detection using multiple targets in ddPCR has never been performed before. Therefore, we developed a multiplex ddPCR assay for multi-cancer detection. Based on previous data analyses using The Cancer Genome Atlas (TCGA), we selected differentially methylated targets for eight frequent tumor types (lung, breast, colorectal, prostate, pancreatic, head and neck, liver, and esophageal cancer). Three targets were validated using ddPCR in 103 tumor and 109 normal adjacent fresh frozen samples. Two distinct ddPCR assays were successfully developed. Output data from both assays is combined to obtain a read-out from the three targets together. Our overall ddPCR assay has a cross-validated area under the curve (cvAUC) of 0.948. Performance between distinct cancer types varies, with sensitivities ranging from 53.8% to 100% and specificities ranging from 80% to 100%. Compared to previously published single-target parameters, we show that combining targets can drastically increase sensitivity and specificity, while lowering DNA input. In conclusion, we are the first to report a multi-cancer methylation ddPCR assay, which allows for highly accurate tumor predictions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular Oncology
Molecular Oncology Biochemistry, Genetics and Molecular Biology-Molecular Medicine
CiteScore
11.80
自引率
1.50%
发文量
203
审稿时长
10 weeks
期刊介绍: Molecular Oncology highlights new discoveries, approaches, and technical developments, in basic, clinical and discovery-driven translational cancer research. It publishes research articles, reviews (by invitation only), and timely science policy articles. The journal is now fully Open Access with all articles published over the past 10 years freely available.
期刊最新文献
RETRACTION: Long noncoding RNA ZNF667-AS1 reduces tumor invasion and metastasis in cervical cancer by counteracting microRNA-93-3p-dependent PEG3 downregulation. Crosstalk between gut microbiota and tumor: tumors could cause gut dysbiosis and metabolic imbalance. Loss of SETD2 in wild-type VHL clear cell renal cell carcinoma sensitizes cells to STF-62247 and leads to DNA damage, cell cycle arrest, and cell death characteristic of pyroptosis. Recent trends and therapeutic potential of phytoceutical-based nanoparticle delivery systems in mitigating non-small cell lung cancer. Viral mimicry evasion: a new role for oncogenic KRAS mutations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1