Romana Stark , Harry Dempsey , Elizabeth Kleeman , Martina Sassi , Sherri Osborne-Lawrence , Sepideh Sheybani-Deloui , Helen J. Rushby , Christen K. Mirth , Karl Austin-Muttitt , Jonathan Mullins , Jeffrey M. Zigman , Jeffrey S. Davies , Zane B. Andrews
{"title":"嗅球中的饥饿信号为探索、寻找食物和外周新陈代谢提供了动力。","authors":"Romana Stark , Harry Dempsey , Elizabeth Kleeman , Martina Sassi , Sherri Osborne-Lawrence , Sepideh Sheybani-Deloui , Helen J. Rushby , Christen K. Mirth , Karl Austin-Muttitt , Jonathan Mullins , Jeffrey M. Zigman , Jeffrey S. Davies , Zane B. Andrews","doi":"10.1016/j.molmet.2024.102025","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism.</div></div><div><h3>Methods</h3><div>We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OB<sup>GHSR</sup> deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus.</div></div><div><h3>Results</h3><div>OB<sup>GHSR</sup> deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OB<sup>GHSR</sup> deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OB<sup>GHSR</sup> deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OB<sup>GHSR</sup> deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OB<sup>GHSR</sup> deletion.</div></div><div><h3>Conclusions</h3><div>OB<sup>GHSRs</sup> help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.</div></div>","PeriodicalId":18765,"journal":{"name":"Molecular Metabolism","volume":"89 ","pages":"Article 102025"},"PeriodicalIF":7.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism\",\"authors\":\"Romana Stark , Harry Dempsey , Elizabeth Kleeman , Martina Sassi , Sherri Osborne-Lawrence , Sepideh Sheybani-Deloui , Helen J. Rushby , Christen K. Mirth , Karl Austin-Muttitt , Jonathan Mullins , Jeffrey M. Zigman , Jeffrey S. Davies , Zane B. Andrews\",\"doi\":\"10.1016/j.molmet.2024.102025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Objective</h3><div>Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism.</div></div><div><h3>Methods</h3><div>We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OB<sup>GHSR</sup> deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus.</div></div><div><h3>Results</h3><div>OB<sup>GHSR</sup> deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OB<sup>GHSR</sup> deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OB<sup>GHSR</sup> deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OB<sup>GHSR</sup> deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OB<sup>GHSR</sup> deletion.</div></div><div><h3>Conclusions</h3><div>OB<sup>GHSRs</sup> help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.</div></div>\",\"PeriodicalId\":18765,\"journal\":{\"name\":\"Molecular Metabolism\",\"volume\":\"89 \",\"pages\":\"Article 102025\"},\"PeriodicalIF\":7.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S221287782400156X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Metabolism","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S221287782400156X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
Hunger signalling in the olfactory bulb primes exploration, food-seeking and peripheral metabolism
Objective
Although the metabolic state of an organism affects olfactory function, the precise mechanisms and their impact on behavior and metabolism remain unknown. Here, we assess whether ghrelin receptors (GHSRs) in the olfactory bulb (OB) increase olfactory function and influence foraging behaviors and metabolism.
Methods
We performed a detailed behavioural and metabolic analysis in mice lacking GHSRs in the OB (OBGHSR deletion). We also analsyed OB scRNA-seq and spatial transcriptomic datasets to assess GHSR+ cells in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus.
Results
OBGHSR deletion affected olfactory discrimination and habituation to both food and non-food odors. Anxiety-like and depression-like behaviors were significantly greater after OBGHSR deletion, whereas exploratory behavior was reduced, with the greatest effect under fasted conditions. OBGHSR deletion impacted feeding behavior as evidenced by altered bout number and duration, as well as buried food-seeking. OBGHSR deletion increased body weight and fat mass, spared fat utilisation on a chow diet and impaired glucose metabolism indicating metabolic dysfunction. Cross referenced analysis of OB scRNA-seq and spatial transcriptomic datasets revealed GHSR+ glutamate neurons in the main and accessory olfactory bulbs, as well as the anterior olfactory nucleus. Ablation of glutamate neurons in the OB reduced ghrelin-induced food finding and phenocopied results seen after OBGHSR deletion.
Conclusions
OBGHSRs help to maintain olfactory function, particularly during hunger, and facilitate behavioral adaptations that optimise food-seeking in anxiogenic environments, priming metabolic pathways in preparation for food consumption.
期刊介绍:
Molecular Metabolism is a leading journal dedicated to sharing groundbreaking discoveries in the field of energy homeostasis and the underlying factors of metabolic disorders. These disorders include obesity, diabetes, cardiovascular disease, and cancer. Our journal focuses on publishing research driven by hypotheses and conducted to the highest standards, aiming to provide a mechanistic understanding of energy homeostasis-related behavior, physiology, and dysfunction.
We promote interdisciplinary science, covering a broad range of approaches from molecules to humans throughout the lifespan. Our goal is to contribute to transformative research in metabolism, which has the potential to revolutionize the field. By enabling progress in the prognosis, prevention, and ultimately the cure of metabolic disorders and their long-term complications, our journal seeks to better the future of health and well-being.