Jirao Shen, Xing Zhao Ji, Lichao Han, Jiang Yao, Yihe Liang, Min Yuan, Shuai Xu, Zhenjun Li
{"title":"水杨酸合成酶NbtS激活NF-κB/MAPK信号传导并诱导细胞凋亡,促进神经炎症的发展。","authors":"Jirao Shen, Xing Zhao Ji, Lichao Han, Jiang Yao, Yihe Liang, Min Yuan, Shuai Xu, Zhenjun Li","doi":"10.1128/msystems.00893-24","DOIUrl":null,"url":null,"abstract":"<p><p><i>Nocardia farcinica</i> can cause a rare, yet potentially fatal, central nervous system infection. NbtS protein may be a key virulence factor in <i>N. farcinica</i> infection of the brain. In this study, we investigated the function of the virulence-associated factor NbtS in microglial cells <i>in vitro</i> and in infected mice <i>in vivo</i>. We explored the interactions between NbtS and microglial cells (BV2 and human microglial clone 3), revealing that NbtS activates the toll-like receptor 4-dependent MyD88-IRAK4-IRAK1 and MAPK/nuclear factor kappa B (NF-κB) pathways, significantly enhancing pro-inflammatory responses as indicated by increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), as measured by ELISA and quantitative PCR. Apoptosis was elevated in these cells, as shown by increased expression of Bax and caspase-3 and decreased Bcl-2 levels. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay also confirmed the occurrence of apoptosis. In vivo, mice infected with an <i>RS03155</i>-deficient strain of <i>N. farcinica</i> exhibited higher survival rates and reduced brain inflammation, suggesting a pivotal role for the NbtS protein in the pathogenesis of <i>Nocardia</i>. Conservation of the <i>RS03155</i> gene across <i>Nocardia</i> spp. was verified by PCR, and the immunogenic potential of NbtS was confirmed by Western blot analysis using sera from infected mice. These findings suggest that targeting NbtS may offer a novel therapeutic strategy against <i>Nocardia</i> infection.</p><p><strong>Importance: </strong>The study presented in this article delves into the molecular underpinnings of <i>Nocardia farcinica</i>-induced neuroinflammation. By focusing on the salicylate synthase gene, <i>RS03155</i>, and its encoded protein, NbtS, we uncover a pivotal virulence factor that triggers a cascade of immunological responses leading to apoptosis in microglial cells. This research not only enhances our comprehension of the pathogenesis of <i>Nocardia</i> infections but also provides a potential therapeutic target. Given the rising importance of understanding host-microbe interactions within the context of the central nervous system, especially in immunocompromised individuals, the findings are of significant relevance to the field of microbiology and could inform future diagnostic and treatment modalities for <i>Nocardia</i>-associated neurological disorders. Our work emphasizes the need for continued research into the intricate mechanisms of microbial pathogenesis and the development of novel strategies to combat life-threatening infections.</p>","PeriodicalId":18819,"journal":{"name":"mSystems","volume":null,"pages":null},"PeriodicalIF":5.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494946/pdf/","citationCount":"0","resultStr":"{\"title\":\"Activation of NF-κB/MAPK signaling and induction of apoptosis by salicylate synthase NbtS in <i>Nocardia farcinica</i> promotes neuroinflammation development.\",\"authors\":\"Jirao Shen, Xing Zhao Ji, Lichao Han, Jiang Yao, Yihe Liang, Min Yuan, Shuai Xu, Zhenjun Li\",\"doi\":\"10.1128/msystems.00893-24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p><i>Nocardia farcinica</i> can cause a rare, yet potentially fatal, central nervous system infection. NbtS protein may be a key virulence factor in <i>N. farcinica</i> infection of the brain. In this study, we investigated the function of the virulence-associated factor NbtS in microglial cells <i>in vitro</i> and in infected mice <i>in vivo</i>. We explored the interactions between NbtS and microglial cells (BV2 and human microglial clone 3), revealing that NbtS activates the toll-like receptor 4-dependent MyD88-IRAK4-IRAK1 and MAPK/nuclear factor kappa B (NF-κB) pathways, significantly enhancing pro-inflammatory responses as indicated by increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), as measured by ELISA and quantitative PCR. Apoptosis was elevated in these cells, as shown by increased expression of Bax and caspase-3 and decreased Bcl-2 levels. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay also confirmed the occurrence of apoptosis. In vivo, mice infected with an <i>RS03155</i>-deficient strain of <i>N. farcinica</i> exhibited higher survival rates and reduced brain inflammation, suggesting a pivotal role for the NbtS protein in the pathogenesis of <i>Nocardia</i>. Conservation of the <i>RS03155</i> gene across <i>Nocardia</i> spp. was verified by PCR, and the immunogenic potential of NbtS was confirmed by Western blot analysis using sera from infected mice. These findings suggest that targeting NbtS may offer a novel therapeutic strategy against <i>Nocardia</i> infection.</p><p><strong>Importance: </strong>The study presented in this article delves into the molecular underpinnings of <i>Nocardia farcinica</i>-induced neuroinflammation. By focusing on the salicylate synthase gene, <i>RS03155</i>, and its encoded protein, NbtS, we uncover a pivotal virulence factor that triggers a cascade of immunological responses leading to apoptosis in microglial cells. This research not only enhances our comprehension of the pathogenesis of <i>Nocardia</i> infections but also provides a potential therapeutic target. Given the rising importance of understanding host-microbe interactions within the context of the central nervous system, especially in immunocompromised individuals, the findings are of significant relevance to the field of microbiology and could inform future diagnostic and treatment modalities for <i>Nocardia</i>-associated neurological disorders. Our work emphasizes the need for continued research into the intricate mechanisms of microbial pathogenesis and the development of novel strategies to combat life-threatening infections.</p>\",\"PeriodicalId\":18819,\"journal\":{\"name\":\"mSystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11494946/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"mSystems\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1128/msystems.00893-24\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"mSystems","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1128/msystems.00893-24","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
Activation of NF-κB/MAPK signaling and induction of apoptosis by salicylate synthase NbtS in Nocardia farcinica promotes neuroinflammation development.
Nocardia farcinica can cause a rare, yet potentially fatal, central nervous system infection. NbtS protein may be a key virulence factor in N. farcinica infection of the brain. In this study, we investigated the function of the virulence-associated factor NbtS in microglial cells in vitro and in infected mice in vivo. We explored the interactions between NbtS and microglial cells (BV2 and human microglial clone 3), revealing that NbtS activates the toll-like receptor 4-dependent MyD88-IRAK4-IRAK1 and MAPK/nuclear factor kappa B (NF-κB) pathways, significantly enhancing pro-inflammatory responses as indicated by increased levels of tumor necrosis factor alpha (TNF-α) and interleukin-1β (IL-1β), as measured by ELISA and quantitative PCR. Apoptosis was elevated in these cells, as shown by increased expression of Bax and caspase-3 and decreased Bcl-2 levels. The terminal deoxynucleotidyl transferase dUTP nick end labeling assay also confirmed the occurrence of apoptosis. In vivo, mice infected with an RS03155-deficient strain of N. farcinica exhibited higher survival rates and reduced brain inflammation, suggesting a pivotal role for the NbtS protein in the pathogenesis of Nocardia. Conservation of the RS03155 gene across Nocardia spp. was verified by PCR, and the immunogenic potential of NbtS was confirmed by Western blot analysis using sera from infected mice. These findings suggest that targeting NbtS may offer a novel therapeutic strategy against Nocardia infection.
Importance: The study presented in this article delves into the molecular underpinnings of Nocardia farcinica-induced neuroinflammation. By focusing on the salicylate synthase gene, RS03155, and its encoded protein, NbtS, we uncover a pivotal virulence factor that triggers a cascade of immunological responses leading to apoptosis in microglial cells. This research not only enhances our comprehension of the pathogenesis of Nocardia infections but also provides a potential therapeutic target. Given the rising importance of understanding host-microbe interactions within the context of the central nervous system, especially in immunocompromised individuals, the findings are of significant relevance to the field of microbiology and could inform future diagnostic and treatment modalities for Nocardia-associated neurological disorders. Our work emphasizes the need for continued research into the intricate mechanisms of microbial pathogenesis and the development of novel strategies to combat life-threatening infections.
mSystemsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
10.50
自引率
3.10%
发文量
308
审稿时长
13 weeks
期刊介绍:
mSystems™ will publish preeminent work that stems from applying technologies for high-throughput analyses to achieve insights into the metabolic and regulatory systems at the scale of both the single cell and microbial communities. The scope of mSystems™ encompasses all important biological and biochemical findings drawn from analyses of large data sets, as well as new computational approaches for deriving these insights. mSystems™ will welcome submissions from researchers who focus on the microbiome, genomics, metagenomics, transcriptomics, metabolomics, proteomics, glycomics, bioinformatics, and computational microbiology. mSystems™ will provide streamlined decisions, while carrying on ASM''s tradition of rigorous peer review.