Fahmi Mesmar, Maram Muhsen, Rachna Mirchandani, Jason P Tourigny, Jason M Tennessen, Maria Bondesson
{"title":"除草剂乙草胺会抑制谷胱甘肽过氧化物酶的活性,从而导致脂质过氧化。","authors":"Fahmi Mesmar, Maram Muhsen, Rachna Mirchandani, Jason P Tourigny, Jason M Tennessen, Maria Bondesson","doi":"10.1093/toxsci/kfae113","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic syndrome is increasing worldwide, particularly in rural communities, where residents have a higher risk of exposure to pesticides. We investigated whether six commonly used agricultural pesticides on corn and soy fields possess adipogenic and metabolic disruption activity. Exposure to two of these pesticides, the herbicides acetochlor and metolachlor, induced adipogenesis in vitro in mouse 3T3-L1 preadipocytes. The most potent compound, acetochlor, was selected for further studies in zebrafish. Acetochlor exposure induced morphological malformations and lethality in zebrafish larvae with an EC50 of 7.8 µM and LC50 of 12 µM. Acetochlor exposure at 10 nM resulted in lipid accumulation in zebrafish larvae when simultaneously fed a high cholesterol diet. To decipher the molecular mechanisms behind acetochlor action, we preformed transcriptomic and lipidomic analysis of exposed animals. The combined omics results suggested that acetochlor exposure increased Nrf2 activity in response to reactive oxygen species, as well as induced lipid peroxidation and ferroptosis. We further discovered that acetochlor structurally shares a chloroacetamide group with known inhibitors of glutathione peroxidase 4 (GPX4). Computational docking analysis suggested that acetochlor covalently binds to the active site of GPX4. Consistent with this prediction, Gpx activity was efficiently repressed by acetochlor in zebrafish, whereas lipid peroxidation was increased. We propose that acetochlor disrupts lipid homeostasis by inhibiting Gpx activity, resulting in accumulation of lipid peroxidation, 4-hydroxynonenal, and reactive oxygen species, which in turn activate Nrf2. Because metolachlor, among other acetanilide herbicides, also contain the chloroacetamide group, inhibition of Gpx activity may represent a novel, common molecular initiating event of metabolic disruption.</p>","PeriodicalId":23178,"journal":{"name":"Toxicological Sciences","volume":null,"pages":null},"PeriodicalIF":3.4000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The herbicide acetochlor causes lipid peroxidation by inhibition of glutathione peroxidase activity.\",\"authors\":\"Fahmi Mesmar, Maram Muhsen, Rachna Mirchandani, Jason P Tourigny, Jason M Tennessen, Maria Bondesson\",\"doi\":\"10.1093/toxsci/kfae113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Metabolic syndrome is increasing worldwide, particularly in rural communities, where residents have a higher risk of exposure to pesticides. We investigated whether six commonly used agricultural pesticides on corn and soy fields possess adipogenic and metabolic disruption activity. Exposure to two of these pesticides, the herbicides acetochlor and metolachlor, induced adipogenesis in vitro in mouse 3T3-L1 preadipocytes. The most potent compound, acetochlor, was selected for further studies in zebrafish. Acetochlor exposure induced morphological malformations and lethality in zebrafish larvae with an EC50 of 7.8 µM and LC50 of 12 µM. Acetochlor exposure at 10 nM resulted in lipid accumulation in zebrafish larvae when simultaneously fed a high cholesterol diet. To decipher the molecular mechanisms behind acetochlor action, we preformed transcriptomic and lipidomic analysis of exposed animals. The combined omics results suggested that acetochlor exposure increased Nrf2 activity in response to reactive oxygen species, as well as induced lipid peroxidation and ferroptosis. We further discovered that acetochlor structurally shares a chloroacetamide group with known inhibitors of glutathione peroxidase 4 (GPX4). Computational docking analysis suggested that acetochlor covalently binds to the active site of GPX4. Consistent with this prediction, Gpx activity was efficiently repressed by acetochlor in zebrafish, whereas lipid peroxidation was increased. We propose that acetochlor disrupts lipid homeostasis by inhibiting Gpx activity, resulting in accumulation of lipid peroxidation, 4-hydroxynonenal, and reactive oxygen species, which in turn activate Nrf2. Because metolachlor, among other acetanilide herbicides, also contain the chloroacetamide group, inhibition of Gpx activity may represent a novel, common molecular initiating event of metabolic disruption.</p>\",\"PeriodicalId\":23178,\"journal\":{\"name\":\"Toxicological Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Toxicological Sciences\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/toxsci/kfae113\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Toxicological Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/toxsci/kfae113","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"TOXICOLOGY","Score":null,"Total":0}
The herbicide acetochlor causes lipid peroxidation by inhibition of glutathione peroxidase activity.
Metabolic syndrome is increasing worldwide, particularly in rural communities, where residents have a higher risk of exposure to pesticides. We investigated whether six commonly used agricultural pesticides on corn and soy fields possess adipogenic and metabolic disruption activity. Exposure to two of these pesticides, the herbicides acetochlor and metolachlor, induced adipogenesis in vitro in mouse 3T3-L1 preadipocytes. The most potent compound, acetochlor, was selected for further studies in zebrafish. Acetochlor exposure induced morphological malformations and lethality in zebrafish larvae with an EC50 of 7.8 µM and LC50 of 12 µM. Acetochlor exposure at 10 nM resulted in lipid accumulation in zebrafish larvae when simultaneously fed a high cholesterol diet. To decipher the molecular mechanisms behind acetochlor action, we preformed transcriptomic and lipidomic analysis of exposed animals. The combined omics results suggested that acetochlor exposure increased Nrf2 activity in response to reactive oxygen species, as well as induced lipid peroxidation and ferroptosis. We further discovered that acetochlor structurally shares a chloroacetamide group with known inhibitors of glutathione peroxidase 4 (GPX4). Computational docking analysis suggested that acetochlor covalently binds to the active site of GPX4. Consistent with this prediction, Gpx activity was efficiently repressed by acetochlor in zebrafish, whereas lipid peroxidation was increased. We propose that acetochlor disrupts lipid homeostasis by inhibiting Gpx activity, resulting in accumulation of lipid peroxidation, 4-hydroxynonenal, and reactive oxygen species, which in turn activate Nrf2. Because metolachlor, among other acetanilide herbicides, also contain the chloroacetamide group, inhibition of Gpx activity may represent a novel, common molecular initiating event of metabolic disruption.
期刊介绍:
The mission of Toxicological Sciences, the official journal of the Society of Toxicology, is to publish a broad spectrum of impactful research in the field of toxicology.
The primary focus of Toxicological Sciences is on original research articles. The journal also provides expert insight via contemporary and systematic reviews, as well as forum articles and editorial content that addresses important topics in the field.
The scope of Toxicological Sciences is focused on a broad spectrum of impactful toxicological research that will advance the multidisciplinary field of toxicology ranging from basic research to model development and application, and decision making. Submissions will include diverse technologies and approaches including, but not limited to: bioinformatics and computational biology, biochemistry, exposure science, histopathology, mass spectrometry, molecular biology, population-based sciences, tissue and cell-based systems, and whole-animal studies. Integrative approaches that combine realistic exposure scenarios with impactful analyses that move the field forward are encouraged.