Jiahong Tan, Daoqi Wang, Wei Dong, Lei Nian, Fen Zhang, Han Zhao, Jie Zhang, Yun Feng
{"title":"全面分析卵巢癌中的 CCAAT/突变体结合蛋白家族","authors":"Jiahong Tan, Daoqi Wang, Wei Dong, Lei Nian, Fen Zhang, Han Zhao, Jie Zhang, Yun Feng","doi":"10.1177/11769351241275877","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Ovarian cancer has brought serious threats to female health. CCAAT/enhancer binding proteins (C/EBPs) are key transcription factors involved in ovarian cancer. Therefore, comprehensive profiling C/EBPs in ovarian cancer is needed.</p><p><strong>Methods: </strong>A comprehensive analysis concerning C/EBPs in ovarian cancer was performed. Firstly, detailed expression of C/EBP family members was integrally retrieved and then confirmed using immunohistochemistry. The regulatory effects and transcription regulatory functions of C/EBPs were studied by using regulatory network analysis and enrichment analysis. Using survival analysis, receiver operating characteristic curve analysis, and target-disease association analysis, the predictive prognostic value of C/EBPs on survival and drug responsiveness was systematically evaluated. The effects of C/EBPs on tumor immune infiltration were also assessed.</p><p><strong>Results: </strong>Ovarian cancer tissues expressed increased CEBPA, CEBPB, and CEBPG but decreased CEBPD when compared with normal control tissues. The overall alteration frequency of C/EBPs in ovarian cancer was approaching 30%. C/EBP family members formed a reciprocal regulatory network involving carcinogenesis and had pivotal transcription regulatory functions. C/EBPs could affect survival of ovarian cancer and correlated with poor survival outcomes (OS: HR = 1.40, P = .0053 and PFS: HR = 1.41, P = .0036). Besides, expression of CEBPA, CEBPB, CEBPD, and CEBPE could predict platinum and taxane responsiveness of ovarian cancer. C/EBPs also affected immune infiltration of ovarian cancer.</p><p><strong>Conclusions: </strong>C/EBPs were closely involved in ovarian cancer and exerted multiple biological functions. C/EBPs could be exploited as prognostic and predictive biomarkers in ovarian cancer.</p>","PeriodicalId":35418,"journal":{"name":"Cancer Informatics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375656/pdf/","citationCount":"0","resultStr":"{\"title\":\"Comprehensive Analysis of CCAAT/Enhancer Binding Protein Family in Ovarian Cancer.\",\"authors\":\"Jiahong Tan, Daoqi Wang, Wei Dong, Lei Nian, Fen Zhang, Han Zhao, Jie Zhang, Yun Feng\",\"doi\":\"10.1177/11769351241275877\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Ovarian cancer has brought serious threats to female health. CCAAT/enhancer binding proteins (C/EBPs) are key transcription factors involved in ovarian cancer. Therefore, comprehensive profiling C/EBPs in ovarian cancer is needed.</p><p><strong>Methods: </strong>A comprehensive analysis concerning C/EBPs in ovarian cancer was performed. Firstly, detailed expression of C/EBP family members was integrally retrieved and then confirmed using immunohistochemistry. The regulatory effects and transcription regulatory functions of C/EBPs were studied by using regulatory network analysis and enrichment analysis. Using survival analysis, receiver operating characteristic curve analysis, and target-disease association analysis, the predictive prognostic value of C/EBPs on survival and drug responsiveness was systematically evaluated. The effects of C/EBPs on tumor immune infiltration were also assessed.</p><p><strong>Results: </strong>Ovarian cancer tissues expressed increased CEBPA, CEBPB, and CEBPG but decreased CEBPD when compared with normal control tissues. The overall alteration frequency of C/EBPs in ovarian cancer was approaching 30%. C/EBP family members formed a reciprocal regulatory network involving carcinogenesis and had pivotal transcription regulatory functions. C/EBPs could affect survival of ovarian cancer and correlated with poor survival outcomes (OS: HR = 1.40, P = .0053 and PFS: HR = 1.41, P = .0036). Besides, expression of CEBPA, CEBPB, CEBPD, and CEBPE could predict platinum and taxane responsiveness of ovarian cancer. C/EBPs also affected immune infiltration of ovarian cancer.</p><p><strong>Conclusions: </strong>C/EBPs were closely involved in ovarian cancer and exerted multiple biological functions. C/EBPs could be exploited as prognostic and predictive biomarkers in ovarian cancer.</p>\",\"PeriodicalId\":35418,\"journal\":{\"name\":\"Cancer Informatics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11375656/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cancer Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/11769351241275877\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11769351241275877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Comprehensive Analysis of CCAAT/Enhancer Binding Protein Family in Ovarian Cancer.
Background: Ovarian cancer has brought serious threats to female health. CCAAT/enhancer binding proteins (C/EBPs) are key transcription factors involved in ovarian cancer. Therefore, comprehensive profiling C/EBPs in ovarian cancer is needed.
Methods: A comprehensive analysis concerning C/EBPs in ovarian cancer was performed. Firstly, detailed expression of C/EBP family members was integrally retrieved and then confirmed using immunohistochemistry. The regulatory effects and transcription regulatory functions of C/EBPs were studied by using regulatory network analysis and enrichment analysis. Using survival analysis, receiver operating characteristic curve analysis, and target-disease association analysis, the predictive prognostic value of C/EBPs on survival and drug responsiveness was systematically evaluated. The effects of C/EBPs on tumor immune infiltration were also assessed.
Results: Ovarian cancer tissues expressed increased CEBPA, CEBPB, and CEBPG but decreased CEBPD when compared with normal control tissues. The overall alteration frequency of C/EBPs in ovarian cancer was approaching 30%. C/EBP family members formed a reciprocal regulatory network involving carcinogenesis and had pivotal transcription regulatory functions. C/EBPs could affect survival of ovarian cancer and correlated with poor survival outcomes (OS: HR = 1.40, P = .0053 and PFS: HR = 1.41, P = .0036). Besides, expression of CEBPA, CEBPB, CEBPD, and CEBPE could predict platinum and taxane responsiveness of ovarian cancer. C/EBPs also affected immune infiltration of ovarian cancer.
Conclusions: C/EBPs were closely involved in ovarian cancer and exerted multiple biological functions. C/EBPs could be exploited as prognostic and predictive biomarkers in ovarian cancer.
期刊介绍:
The field of cancer research relies on advances in many other disciplines, including omics technology, mass spectrometry, radio imaging, computer science, and biostatistics. Cancer Informatics provides open access to peer-reviewed high-quality manuscripts reporting bioinformatics analysis of molecular genetics and/or clinical data pertaining to cancer, emphasizing the use of machine learning, artificial intelligence, statistical algorithms, advanced imaging techniques, data visualization, and high-throughput technologies. As the leading journal dedicated exclusively to the report of the use of computational methods in cancer research and practice, Cancer Informatics leverages methodological improvements in systems biology, genomics, proteomics, metabolomics, and molecular biochemistry into the fields of cancer detection, treatment, classification, risk-prediction, prevention, outcome, and modeling.