{"title":"偏心自旋前处理双黑洞凝聚的有效单体数值相对论波形模型","authors":"Xiaolin Liu, Zhoujian Cao and Zong-Hong Zhu","doi":"10.1088/1361-6382/ad72ca","DOIUrl":null,"url":null,"abstract":"Waveform models are important to gravitational wave data analysis. People recently pay much attention to the waveform model construction for eccentric binary black hole (BBH) coalescence. Several effective-one-body (EOB) Numerical-Relativity waveform models of eccentric BBH coalescence have been constructed. But none of them can treat orbit eccentricity and spin-precessing simultaneously. The current paper focuses on this problem. The authors previously have constructed waveform model for spin-aligned eccentric BBH coalescence SEOBNRE. Here we extend such waveform model to describe eccentric spin-precessing BBH coalescence. We calculate the 2PN orbital radiation-reaction forces and the instantaneous part of the decomposed waveform for a general spinning precessing BBH system in EOB coordinates. We implement these results based on our previous SEOBNRE waveform model. We have also compared our model waveforms to both SXS and RIT numerical relativity waveforms. We find good consistency between our model and numerical relativity. Based on our new waveform model, we analyze the impact of the non-perpendicular spin contributions on waveform accuracy. We find that the non-perpendicular spin contributions primarily affect the phase of the gravitational waveforms. For the current gravitational wave detectors, this contribution is not significant. The future detectors may be affected by such non-perpendicular spin contributions. More importantly our SEOBNRE waveform model, as the first theoretical waveform model to describe eccentric spin-precessing BBH coalescence, can help people to analyze orbit eccentricity and spin precession simultaneously for gravitational wave detection data.","PeriodicalId":10282,"journal":{"name":"Classical and Quantum Gravity","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effective-one-body numerical-relativity waveform model for eccentric spin-precessing binary black hole coalescence\",\"authors\":\"Xiaolin Liu, Zhoujian Cao and Zong-Hong Zhu\",\"doi\":\"10.1088/1361-6382/ad72ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Waveform models are important to gravitational wave data analysis. People recently pay much attention to the waveform model construction for eccentric binary black hole (BBH) coalescence. Several effective-one-body (EOB) Numerical-Relativity waveform models of eccentric BBH coalescence have been constructed. But none of them can treat orbit eccentricity and spin-precessing simultaneously. The current paper focuses on this problem. The authors previously have constructed waveform model for spin-aligned eccentric BBH coalescence SEOBNRE. Here we extend such waveform model to describe eccentric spin-precessing BBH coalescence. We calculate the 2PN orbital radiation-reaction forces and the instantaneous part of the decomposed waveform for a general spinning precessing BBH system in EOB coordinates. We implement these results based on our previous SEOBNRE waveform model. We have also compared our model waveforms to both SXS and RIT numerical relativity waveforms. We find good consistency between our model and numerical relativity. Based on our new waveform model, we analyze the impact of the non-perpendicular spin contributions on waveform accuracy. We find that the non-perpendicular spin contributions primarily affect the phase of the gravitational waveforms. For the current gravitational wave detectors, this contribution is not significant. The future detectors may be affected by such non-perpendicular spin contributions. More importantly our SEOBNRE waveform model, as the first theoretical waveform model to describe eccentric spin-precessing BBH coalescence, can help people to analyze orbit eccentricity and spin precession simultaneously for gravitational wave detection data.\",\"PeriodicalId\":10282,\"journal\":{\"name\":\"Classical and Quantum Gravity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Classical and Quantum Gravity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6382/ad72ca\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Classical and Quantum Gravity","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6382/ad72ca","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Effective-one-body numerical-relativity waveform model for eccentric spin-precessing binary black hole coalescence
Waveform models are important to gravitational wave data analysis. People recently pay much attention to the waveform model construction for eccentric binary black hole (BBH) coalescence. Several effective-one-body (EOB) Numerical-Relativity waveform models of eccentric BBH coalescence have been constructed. But none of them can treat orbit eccentricity and spin-precessing simultaneously. The current paper focuses on this problem. The authors previously have constructed waveform model for spin-aligned eccentric BBH coalescence SEOBNRE. Here we extend such waveform model to describe eccentric spin-precessing BBH coalescence. We calculate the 2PN orbital radiation-reaction forces and the instantaneous part of the decomposed waveform for a general spinning precessing BBH system in EOB coordinates. We implement these results based on our previous SEOBNRE waveform model. We have also compared our model waveforms to both SXS and RIT numerical relativity waveforms. We find good consistency between our model and numerical relativity. Based on our new waveform model, we analyze the impact of the non-perpendicular spin contributions on waveform accuracy. We find that the non-perpendicular spin contributions primarily affect the phase of the gravitational waveforms. For the current gravitational wave detectors, this contribution is not significant. The future detectors may be affected by such non-perpendicular spin contributions. More importantly our SEOBNRE waveform model, as the first theoretical waveform model to describe eccentric spin-precessing BBH coalescence, can help people to analyze orbit eccentricity and spin precession simultaneously for gravitational wave detection data.
期刊介绍:
Classical and Quantum Gravity is an established journal for physicists, mathematicians and cosmologists in the fields of gravitation and the theory of spacetime. The journal is now the acknowledged world leader in classical relativity and all areas of quantum gravity.