用于铵离子电池的 MnCo2O4 尖晶石中的高效非对称扩散通道。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-09-10 Epub Date: 2024-09-06 DOI:10.1073/pnas.2409201121
Kang Xiao, Bo-Hao Xiao, Jian-Xi Li, Shunsheng Cao, Zhao-Qing Liu
{"title":"用于铵离子电池的 MnCo2O4 尖晶石中的高效非对称扩散通道。","authors":"Kang Xiao, Bo-Hao Xiao, Jian-Xi Li, Shunsheng Cao, Zhao-Qing Liu","doi":"10.1073/pnas.2409201121","DOIUrl":null,"url":null,"abstract":"<p><p>Transition metal oxides ion diffusion channels have been developed for ammonium-ion batteries (AIBs). However, the influence of microstructural features of diffusion channels on the storage and diffusion behavior of NH<sub>4</sub><sup>+</sup> is not fully unveiled. In this study, by using MnCo<sub>2</sub>O<sub>4</sub> spinel as a model electrode, the asymmetric ion diffusion channels of MnCo<sub>2</sub>O<sub>4</sub> have been regulated through bond length optimization strategy and investigate the effect of channel size on the diffusion process of NH<sub>4</sub><sup>+</sup>. In addition, the reducing channel size significantly decreases NH<sub>4</sub><sup>+</sup> adsorption energy, thereby accelerating hydrogen bond formation/fracture kinetics and NH<sub>4</sub><sup>+</sup> reversible diffusion within 3D asymmetric channels. The optimized MnCo<sub>2</sub>O<sub>4</sub> with oxygen vacancies/carbon nanotubes composite exhibits impressive specific capacity (219.2 mAh g<sup>-1</sup> at 0.1 A g<sup>-1</sup>) and long-cycle stability. The full cell with 3,4,9,10-perylenetetracarboxylic diimide anode demonstrates a remarkable energy density of 52.3 Wh kg<sup>-1</sup> and maintains 91.9% capacity after 500 cycles. This finding provides a unique approach for the development of cathode materials in AIBs.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406291/pdf/","citationCount":"0","resultStr":"{\"title\":\"Efficient asymmetric diffusion channel in MnCo<sub>2</sub>O<sub>4</sub> spinel for ammonium-ion batteries.\",\"authors\":\"Kang Xiao, Bo-Hao Xiao, Jian-Xi Li, Shunsheng Cao, Zhao-Qing Liu\",\"doi\":\"10.1073/pnas.2409201121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Transition metal oxides ion diffusion channels have been developed for ammonium-ion batteries (AIBs). However, the influence of microstructural features of diffusion channels on the storage and diffusion behavior of NH<sub>4</sub><sup>+</sup> is not fully unveiled. In this study, by using MnCo<sub>2</sub>O<sub>4</sub> spinel as a model electrode, the asymmetric ion diffusion channels of MnCo<sub>2</sub>O<sub>4</sub> have been regulated through bond length optimization strategy and investigate the effect of channel size on the diffusion process of NH<sub>4</sub><sup>+</sup>. In addition, the reducing channel size significantly decreases NH<sub>4</sub><sup>+</sup> adsorption energy, thereby accelerating hydrogen bond formation/fracture kinetics and NH<sub>4</sub><sup>+</sup> reversible diffusion within 3D asymmetric channels. The optimized MnCo<sub>2</sub>O<sub>4</sub> with oxygen vacancies/carbon nanotubes composite exhibits impressive specific capacity (219.2 mAh g<sup>-1</sup> at 0.1 A g<sup>-1</sup>) and long-cycle stability. The full cell with 3,4,9,10-perylenetetracarboxylic diimide anode demonstrates a remarkable energy density of 52.3 Wh kg<sup>-1</sup> and maintains 91.9% capacity after 500 cycles. This finding provides a unique approach for the development of cathode materials in AIBs.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406291/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2409201121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2409201121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属氧化物离子扩散通道已被开发用于铵离子电池(AIB)。然而,扩散通道的微观结构特征对 NH4+ 的存储和扩散行为的影响尚未完全揭示。本研究以 MnCo2O4 尖晶石为模型电极,通过键长优化策略调节 MnCo2O4 的非对称离子扩散通道,研究通道尺寸对 NH4+ 扩散过程的影响。结果表明,三维非对称离子通道的尺寸越小,NH4+的吸附能越低,氢键形成/断裂动力学越快,NH4+在三维非对称离子通道中的可逆扩散越快。优化后的锰钴氧化物氧空位/碳纳米管复合材料表现出惊人的比容量(0.1 A g-1 时为 219.2 mAh g-1)和长周期稳定性。使用 3,4,9,10-perylenetetracarboxylic diimide 阳极的全电池显示出 52.3 Wh kg-1 的显著能量密度,并在 500 个循环后保持 91.9% 的容量。这一发现为开发 AIB 阴极材料提供了一种独特的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient asymmetric diffusion channel in MnCo2O4 spinel for ammonium-ion batteries.

Transition metal oxides ion diffusion channels have been developed for ammonium-ion batteries (AIBs). However, the influence of microstructural features of diffusion channels on the storage and diffusion behavior of NH4+ is not fully unveiled. In this study, by using MnCo2O4 spinel as a model electrode, the asymmetric ion diffusion channels of MnCo2O4 have been regulated through bond length optimization strategy and investigate the effect of channel size on the diffusion process of NH4+. In addition, the reducing channel size significantly decreases NH4+ adsorption energy, thereby accelerating hydrogen bond formation/fracture kinetics and NH4+ reversible diffusion within 3D asymmetric channels. The optimized MnCo2O4 with oxygen vacancies/carbon nanotubes composite exhibits impressive specific capacity (219.2 mAh g-1 at 0.1 A g-1) and long-cycle stability. The full cell with 3,4,9,10-perylenetetracarboxylic diimide anode demonstrates a remarkable energy density of 52.3 Wh kg-1 and maintains 91.9% capacity after 500 cycles. This finding provides a unique approach for the development of cathode materials in AIBs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Reply to Majer et al.: Negotiating policy action for transformation requires both sociopolitical and behavioral perspectives. The behavioral negotiation perspective can reveal how to navigate discord in sustainability transformations constructively. Deafness due to loss of a TRPV channel eliminates mating behavior in Aedes aegypti males. Extremely rapid, yet noncatastrophic, preservation of the flattened-feathered and 3D dinosaurs of the Early Cretaceous of China. Soft matter mechanics of baseball's Rubbing Mud.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1