儿童炎症综合征的血浆无细胞 RNA 特征。

IF 9.4 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Proceedings of the National Academy of Sciences of the United States of America Pub Date : 2024-09-10 Epub Date: 2024-09-06 DOI:10.1073/pnas.2403897121
Conor J Loy, Venice Servellita, Alicia Sotomayor-Gonzalez, Andrew Bliss, Joan S Lenz, Emma Belcher, Will Suslovic, Jenny Nguyen, Meagan E Williams, Miriam Oseguera, Michael A Gardiner, Jong-Ha Choi, Hui-Mien Hsiao, Hao Wang, Jihoon Kim, Chisato Shimizu, Adriana H Tremoulet, Meghan Delaney, Roberta L DeBiasi, Christina A Rostad, Jane C Burns, Charles Y Chiu, Iwijn De Vlaminck
{"title":"儿童炎症综合征的血浆无细胞 RNA 特征。","authors":"Conor J Loy, Venice Servellita, Alicia Sotomayor-Gonzalez, Andrew Bliss, Joan S Lenz, Emma Belcher, Will Suslovic, Jenny Nguyen, Meagan E Williams, Miriam Oseguera, Michael A Gardiner, Jong-Ha Choi, Hui-Mien Hsiao, Hao Wang, Jihoon Kim, Chisato Shimizu, Adriana H Tremoulet, Meghan Delaney, Roberta L DeBiasi, Christina A Rostad, Jane C Burns, Charles Y Chiu, Iwijn De Vlaminck","doi":"10.1073/pnas.2403897121","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), viral infections, and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C-two conditions presenting with overlapping symptoms-with high performance [test area under the curve = 0.98]. We further extended this methodology into a multiclass machine learning framework that achieved 80% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.</p>","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":null,"pages":null},"PeriodicalIF":9.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406294/pdf/","citationCount":"0","resultStr":"{\"title\":\"Plasma cell-free RNA signatures of inflammatory syndromes in children.\",\"authors\":\"Conor J Loy, Venice Servellita, Alicia Sotomayor-Gonzalez, Andrew Bliss, Joan S Lenz, Emma Belcher, Will Suslovic, Jenny Nguyen, Meagan E Williams, Miriam Oseguera, Michael A Gardiner, Jong-Ha Choi, Hui-Mien Hsiao, Hao Wang, Jihoon Kim, Chisato Shimizu, Adriana H Tremoulet, Meghan Delaney, Roberta L DeBiasi, Christina A Rostad, Jane C Burns, Charles Y Chiu, Iwijn De Vlaminck\",\"doi\":\"10.1073/pnas.2403897121\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), viral infections, and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C-two conditions presenting with overlapping symptoms-with high performance [test area under the curve = 0.98]. We further extended this methodology into a multiclass machine learning framework that achieved 80% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.</p>\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11406294/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2403897121\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/6 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2403897121","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

炎症综合征,包括由感染引起的炎症综合征,是儿童入院治疗的一个主要原因,但由于缺乏先进的分子诊断工具,常常被误诊。在这项研究中,我们探讨了血浆中循环无细胞 RNA(cfRNA)作为一种分析物对儿科炎症综合征的鉴别诊断和特征描述的作用。我们分析了 370 份血浆样本中的 cfRNA,这些样本来自患有各种炎症的儿科患者,包括川崎病(KD)、儿童多系统炎症综合征(MIS-C)、病毒感染和细菌感染。我们根据这些 cfRNA 图谱开发了机器学习模型,该模型能有效区分 KD 和 MIS-C(这两种疾病的症状相互重叠),而且性能很高[曲线下测试面积 = 0.98]。我们进一步将这种方法扩展到多类机器学习框架中,在区分 KD、MIS-C、病毒和细菌感染方面达到了 80% 的准确率。我们进一步证明,cfRNA 图谱可用于量化特定组织和器官的损伤,包括肝脏、心脏、内皮、神经系统和上呼吸道。总之,这项研究发现 cfRNA 是一种多功能分析物,可用于鉴别诊断和描述各种儿科炎症综合征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasma cell-free RNA signatures of inflammatory syndromes in children.

Inflammatory syndromes, including those caused by infection, are a major cause of hospital admissions among children and are often misdiagnosed because of a lack of advanced molecular diagnostic tools. In this study, we explored the utility of circulating cell-free RNA (cfRNA) in plasma as an analyte for the differential diagnosis and characterization of pediatric inflammatory syndromes. We profiled cfRNA in 370 plasma samples from pediatric patients with a range of inflammatory conditions, including Kawasaki disease (KD), multisystem inflammatory syndrome in children (MIS-C), viral infections, and bacterial infections. We developed machine learning models based on these cfRNA profiles, which effectively differentiated KD from MIS-C-two conditions presenting with overlapping symptoms-with high performance [test area under the curve = 0.98]. We further extended this methodology into a multiclass machine learning framework that achieved 80% accuracy in distinguishing among KD, MIS-C, viral, and bacterial infections. We further demonstrated that cfRNA profiles can be used to quantify injury to specific tissues and organs, including the liver, heart, endothelium, nervous system, and the upper respiratory tract. Overall, this study identified cfRNA as a versatile analyte for the differential diagnosis and characterization of a wide range of pediatric inflammatory syndromes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
期刊最新文献
Reply to Majer et al.: Negotiating policy action for transformation requires both sociopolitical and behavioral perspectives. The behavioral negotiation perspective can reveal how to navigate discord in sustainability transformations constructively. Deafness due to loss of a TRPV channel eliminates mating behavior in Aedes aegypti males. Extremely rapid, yet noncatastrophic, preservation of the flattened-feathered and 3D dinosaurs of the Early Cretaceous of China. Soft matter mechanics of baseball's Rubbing Mud.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1