停放车辆辅助多接入边缘计算的联合部分卸载和资源分配

IF 5.1 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS IEEE Transactions on Emerging Topics in Computing Pub Date : 2023-12-25 DOI:10.1109/TETC.2023.3344133
Xuan-Qui Pham;Thien Huynh-The;Dong-Seong Kim
{"title":"停放车辆辅助多接入边缘计算的联合部分卸载和资源分配","authors":"Xuan-Qui Pham;Thien Huynh-The;Dong-Seong Kim","doi":"10.1109/TETC.2023.3344133","DOIUrl":null,"url":null,"abstract":"In recent years, parked vehicle-assisted multi-access edge computing (PVMEC) has emerged to expand the computational power of MEC networks by utilizing the opportunistic resources of parked vehicles (PVs) for computation offloading. In this article, we study a joint optimization problem of partial offloading and resource allocation in a PVMEC paradigm that enables each mobile device (MD) to offload its task partially to either the MEC server or nearby PVs. The problem is first formulated as a mixed-integer nonlinear programming problem with the aim of maximizing the total offloading utility of all MDs in terms of the benefit of reducing latency through offloading and the overall cost of using computing and networking resources. We then propose a partial offloading scheme, which employs a differentiation method to derive the optimal offloading ratio and resource allocation while optimizing the task assignment using a metaheuristic solution based on the whale optimization algorithm. Finally, evaluation results justify the superior system utility of our proposal compared with existing baselines.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 3","pages":"918-923"},"PeriodicalIF":5.1000,"publicationDate":"2023-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Partial Offloading and Resource Allocation for Parked Vehicle-Assisted Multi-Access Edge Computing\",\"authors\":\"Xuan-Qui Pham;Thien Huynh-The;Dong-Seong Kim\",\"doi\":\"10.1109/TETC.2023.3344133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, parked vehicle-assisted multi-access edge computing (PVMEC) has emerged to expand the computational power of MEC networks by utilizing the opportunistic resources of parked vehicles (PVs) for computation offloading. In this article, we study a joint optimization problem of partial offloading and resource allocation in a PVMEC paradigm that enables each mobile device (MD) to offload its task partially to either the MEC server or nearby PVs. The problem is first formulated as a mixed-integer nonlinear programming problem with the aim of maximizing the total offloading utility of all MDs in terms of the benefit of reducing latency through offloading and the overall cost of using computing and networking resources. We then propose a partial offloading scheme, which employs a differentiation method to derive the optimal offloading ratio and resource allocation while optimizing the task assignment using a metaheuristic solution based on the whale optimization algorithm. Finally, evaluation results justify the superior system utility of our proposal compared with existing baselines.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 3\",\"pages\":\"918-923\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-12-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10373790/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10373790/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

近年来,停放车辆辅助多访问边缘计算(PVMEC)应运而生,它利用停放车辆(PV)的机会性资源进行计算卸载,从而扩展了 MEC 网络的计算能力。本文研究了 PVMEC 模式中部分卸载和资源分配的联合优化问题,该模式使每个移动设备(MD)都能将其任务部分卸载给 MEC 服务器或附近的 PV。该问题首先被表述为一个混合整数非线性编程问题,目的是最大化所有 MD 的总卸载效用,即通过卸载减少延迟的收益以及使用计算和网络资源的总体成本。然后,我们提出了一种部分卸载方案,该方案采用微分法得出最佳卸载率和资源分配,同时使用基于鲸鱼优化算法的元启发式解决方案优化任务分配。最后,评估结果证明,与现有基线相比,我们的建议具有更高的系统实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Joint Partial Offloading and Resource Allocation for Parked Vehicle-Assisted Multi-Access Edge Computing
In recent years, parked vehicle-assisted multi-access edge computing (PVMEC) has emerged to expand the computational power of MEC networks by utilizing the opportunistic resources of parked vehicles (PVs) for computation offloading. In this article, we study a joint optimization problem of partial offloading and resource allocation in a PVMEC paradigm that enables each mobile device (MD) to offload its task partially to either the MEC server or nearby PVs. The problem is first formulated as a mixed-integer nonlinear programming problem with the aim of maximizing the total offloading utility of all MDs in terms of the benefit of reducing latency through offloading and the overall cost of using computing and networking resources. We then propose a partial offloading scheme, which employs a differentiation method to derive the optimal offloading ratio and resource allocation while optimizing the task assignment using a metaheuristic solution based on the whale optimization algorithm. Finally, evaluation results justify the superior system utility of our proposal compared with existing baselines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Emerging Topics in Computing
IEEE Transactions on Emerging Topics in Computing Computer Science-Computer Science (miscellaneous)
CiteScore
12.10
自引率
5.10%
发文量
113
期刊介绍: IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.
期刊最新文献
Table of Contents Front Cover IEEE Transactions on Emerging Topics in Computing Information for Authors Special Section on Emerging Social Computing DALTON - Deep Local Learning in SNNs via local Weights and Surrogate-Derivative Transfer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1