{"title":"设计具有成本效益的高速量子可逆携带选择加法器","authors":"Shekoofeh Moghimi;Mohammad Reza Reshadinezhad;Antonio Rubio","doi":"10.1109/TETC.2023.3332426","DOIUrl":null,"url":null,"abstract":"Compared to classical computing implementations, reversible arithmetic adders offer a valuable platform for implementing quantum computation models in digital systems and specific applications, such as cryptography and natural language processing. Reversible logic efficiently prevents energy wastage through thermal dissipation. This study presents a comprehensive exploration introducing new carry-select adders (CSLA) based on quantum and reversible logic. Five reversible CSLA designs are proposed and compared, evaluating various criteria, including speed, quantum cost, and area, compared to previously published schemes. These comparative metrics are formulated for arbitrary n-bit size blocks. Each design type is described generically, capable of implementing carry-select adders of any size. As the best outcome, this study proposes an optimized reversible adder circuit that addresses quantum propagation delay, achieving an acceptable trade-off with quantum cost compared to its counterparts. This article reduces calculation delay by 66%, 73%, 82%, and 87% for 16, 32, 64, and 128 bits, respectively, while maintaining a lower quantum cost in all cases.","PeriodicalId":13156,"journal":{"name":"IEEE Transactions on Emerging Topics in Computing","volume":"12 3","pages":"905-917"},"PeriodicalIF":5.1000,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Toward Designing High-Speed Cost-Efficient Quantum Reversible Carry Select Adders\",\"authors\":\"Shekoofeh Moghimi;Mohammad Reza Reshadinezhad;Antonio Rubio\",\"doi\":\"10.1109/TETC.2023.3332426\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compared to classical computing implementations, reversible arithmetic adders offer a valuable platform for implementing quantum computation models in digital systems and specific applications, such as cryptography and natural language processing. Reversible logic efficiently prevents energy wastage through thermal dissipation. This study presents a comprehensive exploration introducing new carry-select adders (CSLA) based on quantum and reversible logic. Five reversible CSLA designs are proposed and compared, evaluating various criteria, including speed, quantum cost, and area, compared to previously published schemes. These comparative metrics are formulated for arbitrary n-bit size blocks. Each design type is described generically, capable of implementing carry-select adders of any size. As the best outcome, this study proposes an optimized reversible adder circuit that addresses quantum propagation delay, achieving an acceptable trade-off with quantum cost compared to its counterparts. This article reduces calculation delay by 66%, 73%, 82%, and 87% for 16, 32, 64, and 128 bits, respectively, while maintaining a lower quantum cost in all cases.\",\"PeriodicalId\":13156,\"journal\":{\"name\":\"IEEE Transactions on Emerging Topics in Computing\",\"volume\":\"12 3\",\"pages\":\"905-917\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2023-11-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Emerging Topics in Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10323334/\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Emerging Topics in Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10323334/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Compared to classical computing implementations, reversible arithmetic adders offer a valuable platform for implementing quantum computation models in digital systems and specific applications, such as cryptography and natural language processing. Reversible logic efficiently prevents energy wastage through thermal dissipation. This study presents a comprehensive exploration introducing new carry-select adders (CSLA) based on quantum and reversible logic. Five reversible CSLA designs are proposed and compared, evaluating various criteria, including speed, quantum cost, and area, compared to previously published schemes. These comparative metrics are formulated for arbitrary n-bit size blocks. Each design type is described generically, capable of implementing carry-select adders of any size. As the best outcome, this study proposes an optimized reversible adder circuit that addresses quantum propagation delay, achieving an acceptable trade-off with quantum cost compared to its counterparts. This article reduces calculation delay by 66%, 73%, 82%, and 87% for 16, 32, 64, and 128 bits, respectively, while maintaining a lower quantum cost in all cases.
期刊介绍:
IEEE Transactions on Emerging Topics in Computing publishes papers on emerging aspects of computer science, computing technology, and computing applications not currently covered by other IEEE Computer Society Transactions. Some examples of emerging topics in computing include: IT for Green, Synthetic and organic computing structures and systems, Advanced analytics, Social/occupational computing, Location-based/client computer systems, Morphic computer design, Electronic game systems, & Health-care IT.