{"title":"HSP90/LSD1双重抑制剂对前列腺癌以及源自患者的结直肠组织细胞的抑制作用。","authors":"","doi":"10.1016/j.ejmech.2024.116801","DOIUrl":null,"url":null,"abstract":"<div><p>The rational installation of pharmacophores targeting HSP90 and LSD1 axes has achieved significant anti-cancer capacity in prostate and colorectal cancer. Among the series of hybrids, inhibitor <strong>6</strong> exhibited remarkable anti-proliferative activity against prostate cancer cell lines PC-3 and DU145, with GI<sub>50</sub> values of 0.24 and 0.30 μM, respectively. It demonstrated notable efficacy in combinatorial attack and cell death initiation towards apoptosis. The cell death process was mediated by PARP induction and γH2AX signaling, and was also characterized as caspase-dependent and Bcl-xL/Bax-independent. Notably, no difference in eye size or morphology was observed in the zebrafish treated with compound <strong>6</strong> compared to the reference group (AUY922). The profound treatment response in docetaxel-resistant PC-3 cells highlighted the dual inhibitory ability in improving docetaxel sensitivity. Additionally, at a minimum concentration of 1.25 μM, compound <strong>6</strong> effectively inhibited the growth of patient-derived colorectal cancer (CRC) organoids for up to 10 days <em>in vitro</em>. Together, the designed HSP90/LSD1 inhibitors present a novel route and significant clinical value for anti-cancer drug therapy.</p></div>","PeriodicalId":314,"journal":{"name":"European Journal of Medicinal Chemistry","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HSP90/LSD1 dual inhibitors against prostate cancer as well as patient-derived colorectal organoids\",\"authors\":\"\",\"doi\":\"10.1016/j.ejmech.2024.116801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The rational installation of pharmacophores targeting HSP90 and LSD1 axes has achieved significant anti-cancer capacity in prostate and colorectal cancer. Among the series of hybrids, inhibitor <strong>6</strong> exhibited remarkable anti-proliferative activity against prostate cancer cell lines PC-3 and DU145, with GI<sub>50</sub> values of 0.24 and 0.30 μM, respectively. It demonstrated notable efficacy in combinatorial attack and cell death initiation towards apoptosis. The cell death process was mediated by PARP induction and γH2AX signaling, and was also characterized as caspase-dependent and Bcl-xL/Bax-independent. Notably, no difference in eye size or morphology was observed in the zebrafish treated with compound <strong>6</strong> compared to the reference group (AUY922). The profound treatment response in docetaxel-resistant PC-3 cells highlighted the dual inhibitory ability in improving docetaxel sensitivity. Additionally, at a minimum concentration of 1.25 μM, compound <strong>6</strong> effectively inhibited the growth of patient-derived colorectal cancer (CRC) organoids for up to 10 days <em>in vitro</em>. Together, the designed HSP90/LSD1 inhibitors present a novel route and significant clinical value for anti-cancer drug therapy.</p></div>\",\"PeriodicalId\":314,\"journal\":{\"name\":\"European Journal of Medicinal Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medicinal Chemistry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0223523424006822\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0223523424006822","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
HSP90/LSD1 dual inhibitors against prostate cancer as well as patient-derived colorectal organoids
The rational installation of pharmacophores targeting HSP90 and LSD1 axes has achieved significant anti-cancer capacity in prostate and colorectal cancer. Among the series of hybrids, inhibitor 6 exhibited remarkable anti-proliferative activity against prostate cancer cell lines PC-3 and DU145, with GI50 values of 0.24 and 0.30 μM, respectively. It demonstrated notable efficacy in combinatorial attack and cell death initiation towards apoptosis. The cell death process was mediated by PARP induction and γH2AX signaling, and was also characterized as caspase-dependent and Bcl-xL/Bax-independent. Notably, no difference in eye size or morphology was observed in the zebrafish treated with compound 6 compared to the reference group (AUY922). The profound treatment response in docetaxel-resistant PC-3 cells highlighted the dual inhibitory ability in improving docetaxel sensitivity. Additionally, at a minimum concentration of 1.25 μM, compound 6 effectively inhibited the growth of patient-derived colorectal cancer (CRC) organoids for up to 10 days in vitro. Together, the designed HSP90/LSD1 inhibitors present a novel route and significant clinical value for anti-cancer drug therapy.
期刊介绍:
The European Journal of Medicinal Chemistry is a global journal that publishes studies on all aspects of medicinal chemistry. It provides a medium for publication of original papers and also welcomes critical review papers.
A typical paper would report on the organic synthesis, characterization and pharmacological evaluation of compounds. Other topics of interest are drug design, QSAR, molecular modeling, drug-receptor interactions, molecular aspects of drug metabolism, prodrug synthesis and drug targeting. The journal expects manuscripts to present the rational for a study, provide insight into the design of compounds or understanding of mechanism, or clarify the targets.