{"title":"调查气候和季节性对泰国天那色林山脉森林连接区蚊子(双翅目:Culicidae)病媒种群的影响。","authors":"Tanawat Chaiphongpachara , Sedthapong Laojun , Suchada Sumruayphol , Nantana Suwandittakul , Kanokwan Suwannarong , Siripong Pimsuka","doi":"10.1016/j.actatropica.2024.107380","DOIUrl":null,"url":null,"abstract":"<div><p>Mosquito-borne diseases pose a significant public health challenge globally. Our study focused on the seasonal diversity of mosquito species in the connecting areas of the Tenasserim (also known as Tanaosri) range forests in Thailand. Additionally, we employed the geometric morphometric technique to assess variations in wing size and shape among five predominant mosquito species. Throughout the study period, we collected a total of 9,522 mosquitoes, encompassing 42 species across eight genera. In these connecting areas of forests, the Simpson index and Shannon species diversity index were recorded at 0.86 and 2.36, respectively, indicating a high level of mosquito diversity. Our analysis using the Analysis of Similarities (ANOSIM) test showed significant seasonal differences in mosquito communities, with an <em>R</em>-value of 0.30 (<em>p</em> < 0.05) in the lower connecting areas and 0.37 (<em>p</em> < 0.05) in the upper connecting areas. Additionally, canonical correspondence analyses showed that the abundance of each mosquito species is influenced by various climate factors. Phenotypic analyses of wing size and shape have deepened our understanding of local adaptation and the seasonal pressures impacting these vectors. Notably, most species exhibited larger wing sizes in the dry season compared to other seasons. Additionally, seasonal assessments of wing shape in five predominant mosquito species revealed significant differences across seasonal populations (<em>p</em> < 0.05). Ongoing monitoring of these populations is crucial to enhancing our understanding of the seasonal effects on mosquito abundance and physiological adaptations. These insights are essential for developing more effective strategies to manage mosquito-borne diseases.</p></div>","PeriodicalId":7240,"journal":{"name":"Acta tropica","volume":"259 ","pages":"Article 107380"},"PeriodicalIF":2.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating the impact of climate and seasonality on mosquito (Diptera: Culicidae) vector populations in the connecting areas of the Tenasserim range forests in Thailand\",\"authors\":\"Tanawat Chaiphongpachara , Sedthapong Laojun , Suchada Sumruayphol , Nantana Suwandittakul , Kanokwan Suwannarong , Siripong Pimsuka\",\"doi\":\"10.1016/j.actatropica.2024.107380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mosquito-borne diseases pose a significant public health challenge globally. Our study focused on the seasonal diversity of mosquito species in the connecting areas of the Tenasserim (also known as Tanaosri) range forests in Thailand. Additionally, we employed the geometric morphometric technique to assess variations in wing size and shape among five predominant mosquito species. Throughout the study period, we collected a total of 9,522 mosquitoes, encompassing 42 species across eight genera. In these connecting areas of forests, the Simpson index and Shannon species diversity index were recorded at 0.86 and 2.36, respectively, indicating a high level of mosquito diversity. Our analysis using the Analysis of Similarities (ANOSIM) test showed significant seasonal differences in mosquito communities, with an <em>R</em>-value of 0.30 (<em>p</em> < 0.05) in the lower connecting areas and 0.37 (<em>p</em> < 0.05) in the upper connecting areas. Additionally, canonical correspondence analyses showed that the abundance of each mosquito species is influenced by various climate factors. Phenotypic analyses of wing size and shape have deepened our understanding of local adaptation and the seasonal pressures impacting these vectors. Notably, most species exhibited larger wing sizes in the dry season compared to other seasons. Additionally, seasonal assessments of wing shape in five predominant mosquito species revealed significant differences across seasonal populations (<em>p</em> < 0.05). Ongoing monitoring of these populations is crucial to enhancing our understanding of the seasonal effects on mosquito abundance and physiological adaptations. These insights are essential for developing more effective strategies to manage mosquito-borne diseases.</p></div>\",\"PeriodicalId\":7240,\"journal\":{\"name\":\"Acta tropica\",\"volume\":\"259 \",\"pages\":\"Article 107380\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta tropica\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0001706X24002626\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta tropica","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0001706X24002626","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
Investigating the impact of climate and seasonality on mosquito (Diptera: Culicidae) vector populations in the connecting areas of the Tenasserim range forests in Thailand
Mosquito-borne diseases pose a significant public health challenge globally. Our study focused on the seasonal diversity of mosquito species in the connecting areas of the Tenasserim (also known as Tanaosri) range forests in Thailand. Additionally, we employed the geometric morphometric technique to assess variations in wing size and shape among five predominant mosquito species. Throughout the study period, we collected a total of 9,522 mosquitoes, encompassing 42 species across eight genera. In these connecting areas of forests, the Simpson index and Shannon species diversity index were recorded at 0.86 and 2.36, respectively, indicating a high level of mosquito diversity. Our analysis using the Analysis of Similarities (ANOSIM) test showed significant seasonal differences in mosquito communities, with an R-value of 0.30 (p < 0.05) in the lower connecting areas and 0.37 (p < 0.05) in the upper connecting areas. Additionally, canonical correspondence analyses showed that the abundance of each mosquito species is influenced by various climate factors. Phenotypic analyses of wing size and shape have deepened our understanding of local adaptation and the seasonal pressures impacting these vectors. Notably, most species exhibited larger wing sizes in the dry season compared to other seasons. Additionally, seasonal assessments of wing shape in five predominant mosquito species revealed significant differences across seasonal populations (p < 0.05). Ongoing monitoring of these populations is crucial to enhancing our understanding of the seasonal effects on mosquito abundance and physiological adaptations. These insights are essential for developing more effective strategies to manage mosquito-borne diseases.
期刊介绍:
Acta Tropica, is an international journal on infectious diseases that covers public health sciences and biomedical research with particular emphasis on topics relevant to human and animal health in the tropics and the subtropics.