在基于人工智能的放射图像解读中,利用生成预训练重建患者特异性混杂因素。

IF 11.7 1区 医学 Q1 CELL BIOLOGY Cell Reports Medicine Pub Date : 2024-09-17 Epub Date: 2024-09-05 DOI:10.1016/j.xcrm.2024.101713
Tianyu Han, Laura Žigutytė, Luisa Huck, Marc Sebastian Huppertz, Robert Siepmann, Yossi Gandelsman, Christian Blüthgen, Firas Khader, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn
{"title":"在基于人工智能的放射图像解读中,利用生成预训练重建患者特异性混杂因素。","authors":"Tianyu Han, Laura Žigutytė, Luisa Huck, Marc Sebastian Huppertz, Robert Siepmann, Yossi Gandelsman, Christian Blüthgen, Firas Khader, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn","doi":"10.1016/j.xcrm.2024.101713","DOIUrl":null,"url":null,"abstract":"<p><p>Reliably detecting potentially misleading patterns in automated diagnostic assistance systems, such as those powered by artificial intelligence (AI), is crucial for instilling user trust and ensuring reliability. Current techniques fall short in visualizing such confounding factors. We propose DiffChest, a self-conditioned diffusion model trained on 515,704 chest radiographs from 194,956 patients across the US and Europe. DiffChest provides patient-specific explanations and visualizes confounding factors that might mislead the model. The high inter-reader agreement, with Fleiss' kappa values of 0.8 or higher, validates its capability to identify treatment-related confounders. Confounders are accurately detected with 10%-100% prevalence rates. The pretraining process optimizes the model for relevant imaging information, resulting in excellent diagnostic accuracy for 11 chest conditions, including pleural effusion and heart insufficiency. Our findings highlight the potential of diffusion models in medical image classification, providing insights into confounding factors and enhancing model robustness and reliability.</p>","PeriodicalId":9822,"journal":{"name":"Cell Reports Medicine","volume":null,"pages":null},"PeriodicalIF":11.7000,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528237/pdf/","citationCount":"0","resultStr":"{\"title\":\"Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretraining.\",\"authors\":\"Tianyu Han, Laura Žigutytė, Luisa Huck, Marc Sebastian Huppertz, Robert Siepmann, Yossi Gandelsman, Christian Blüthgen, Firas Khader, Christiane Kuhl, Sven Nebelung, Jakob Nikolas Kather, Daniel Truhn\",\"doi\":\"10.1016/j.xcrm.2024.101713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Reliably detecting potentially misleading patterns in automated diagnostic assistance systems, such as those powered by artificial intelligence (AI), is crucial for instilling user trust and ensuring reliability. Current techniques fall short in visualizing such confounding factors. We propose DiffChest, a self-conditioned diffusion model trained on 515,704 chest radiographs from 194,956 patients across the US and Europe. DiffChest provides patient-specific explanations and visualizes confounding factors that might mislead the model. The high inter-reader agreement, with Fleiss' kappa values of 0.8 or higher, validates its capability to identify treatment-related confounders. Confounders are accurately detected with 10%-100% prevalence rates. The pretraining process optimizes the model for relevant imaging information, resulting in excellent diagnostic accuracy for 11 chest conditions, including pleural effusion and heart insufficiency. Our findings highlight the potential of diffusion models in medical image classification, providing insights into confounding factors and enhancing model robustness and reliability.</p>\",\"PeriodicalId\":9822,\"journal\":{\"name\":\"Cell Reports Medicine\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":11.7000,\"publicationDate\":\"2024-09-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11528237/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Reports Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.xcrm.2024.101713\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/5 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Reports Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.xcrm.2024.101713","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

可靠地检测自动诊断辅助系统(如由人工智能(AI)驱动的系统)中可能存在的误导模式,对于建立用户信任和确保可靠性至关重要。目前的技术在可视化此类混杂因素方面存在不足。我们提出的 DiffChest 是一个自条件扩散模型,它是在来自美国和欧洲 194956 名患者的 515704 张胸片上训练出来的。DiffChest 提供针对患者的解释,并将可能误导模型的混杂因素可视化。读片者之间的一致性很高,Fleiss' kappa 值达到 0.8 或更高,验证了其识别治疗相关混杂因素的能力。混杂因素的准确检测率为 10%-100%。预训练过程优化了模型的相关成像信息,使其对包括胸腔积液和心功能不全在内的 11 种胸部疾病具有极高的诊断准确性。我们的研究结果凸显了扩散模型在医学影像分类中的潜力,为混杂因素提供了洞察力,并增强了模型的稳健性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reconstruction of patient-specific confounders in AI-based radiologic image interpretation using generative pretraining.

Reliably detecting potentially misleading patterns in automated diagnostic assistance systems, such as those powered by artificial intelligence (AI), is crucial for instilling user trust and ensuring reliability. Current techniques fall short in visualizing such confounding factors. We propose DiffChest, a self-conditioned diffusion model trained on 515,704 chest radiographs from 194,956 patients across the US and Europe. DiffChest provides patient-specific explanations and visualizes confounding factors that might mislead the model. The high inter-reader agreement, with Fleiss' kappa values of 0.8 or higher, validates its capability to identify treatment-related confounders. Confounders are accurately detected with 10%-100% prevalence rates. The pretraining process optimizes the model for relevant imaging information, resulting in excellent diagnostic accuracy for 11 chest conditions, including pleural effusion and heart insufficiency. Our findings highlight the potential of diffusion models in medical image classification, providing insights into confounding factors and enhancing model robustness and reliability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Reports Medicine
Cell Reports Medicine Biochemistry, Genetics and Molecular Biology-Biochemistry, Genetics and Molecular Biology (all)
CiteScore
15.00
自引率
1.40%
发文量
231
审稿时长
40 days
期刊介绍: Cell Reports Medicine is an esteemed open-access journal by Cell Press that publishes groundbreaking research in translational and clinical biomedical sciences, influencing human health and medicine. Our journal ensures wide visibility and accessibility, reaching scientists and clinicians across various medical disciplines. We publish original research that spans from intriguing human biology concepts to all aspects of clinical work. We encourage submissions that introduce innovative ideas, forging new paths in clinical research and practice. We also welcome studies that provide vital information, enhancing our understanding of current standards of care in diagnosis, treatment, and prognosis. This encompasses translational studies, clinical trials (including long-term follow-ups), genomics, biomarker discovery, and technological advancements that contribute to diagnostics, treatment, and healthcare. Additionally, studies based on vertebrate model organisms are within the scope of the journal, as long as they directly relate to human health and disease.
期刊最新文献
Concurrent SOS1 and MEK suppression inhibits signaling and growth of NF1-null melanoma. Degradation of IKZF1 prevents epigenetic progression of T cell exhaustion in an antigen-specific assay. Bifidobacteria with indole-3-lactic acid-producing capacity exhibit psychobiotic potential via reducing neuroinflammation. Lnc-H19-derived protein shapes the immunosuppressive microenvironment of glioblastoma. Effect of remote ischemic preconditioning on cerebral circulation time in severe carotid artery stenosis: Results from the RIC-CCT trial.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1