{"title":"基于斑马鱼炎症模型和原发性中性粒细胞炎症反应的氧化苦参碱对中性粒细胞功能的影响","authors":"","doi":"10.1016/j.intimp.2024.113064","DOIUrl":null,"url":null,"abstract":"<div><p><em>Sophora flavescens Ait.</em> (SFA), an extensively utilized herb for the treatment of fevers, inflammatory disorders, ulcers and skin diseases related to bur, contains oxymatrine (OMT) as its principal active constituent. OMT exerts regulatory effects over inflammation, oxidative stress and apoptosis. Neutrophils, critical regulators of the inflammation response, have not been thoroughly elucidated regarding the protective properties and underlying mechanisms of OMT-mediated anti-inflammation. This study was aim to explore the protective effect of OMT on neutrophils under inflammatory conditions and delve into its potential mechanism. Leveraging the advantages of zebrafish, an animal model with a real-time dynamic observation system, we established an in <em>vivo</em> caudal fin wound model and a copper sulfate induced-inflammation model in zebrafish line <em>Tg (mpx:GFP)</em>. The result revealed that OMT significantly attenuated neutrophil migration, upregulated the mRNA expression levels of JNK, casp3, mapk14a, mapkapk2a and map2k1 damaged by zebrafish caudal fin wound model, and downregulated mRNA expression levels of JNK, casp3, mapk14a, mapkapk2a and map2k1 in the copper sulfate injury model. In <em>vitro</em> experiments demonstrated that OMT modulated the chemotaxis response of primary neutrophils from mice, enhanced phagocytosis, reduced oxidative stress and alleviated inflammation level. We hypothesize that the OMT may exert its anti-inflammatory effects by regulating primary neutrophils through the MAPK signaling pathway.</p></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of oxymatrine on neutrophil function based on zebrafish inflammation model and primary neutrophil inflammatory responses\",\"authors\":\"\",\"doi\":\"10.1016/j.intimp.2024.113064\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Sophora flavescens Ait.</em> (SFA), an extensively utilized herb for the treatment of fevers, inflammatory disorders, ulcers and skin diseases related to bur, contains oxymatrine (OMT) as its principal active constituent. OMT exerts regulatory effects over inflammation, oxidative stress and apoptosis. Neutrophils, critical regulators of the inflammation response, have not been thoroughly elucidated regarding the protective properties and underlying mechanisms of OMT-mediated anti-inflammation. This study was aim to explore the protective effect of OMT on neutrophils under inflammatory conditions and delve into its potential mechanism. Leveraging the advantages of zebrafish, an animal model with a real-time dynamic observation system, we established an in <em>vivo</em> caudal fin wound model and a copper sulfate induced-inflammation model in zebrafish line <em>Tg (mpx:GFP)</em>. The result revealed that OMT significantly attenuated neutrophil migration, upregulated the mRNA expression levels of JNK, casp3, mapk14a, mapkapk2a and map2k1 damaged by zebrafish caudal fin wound model, and downregulated mRNA expression levels of JNK, casp3, mapk14a, mapkapk2a and map2k1 in the copper sulfate injury model. In <em>vitro</em> experiments demonstrated that OMT modulated the chemotaxis response of primary neutrophils from mice, enhanced phagocytosis, reduced oxidative stress and alleviated inflammation level. We hypothesize that the OMT may exert its anti-inflammatory effects by regulating primary neutrophils through the MAPK signaling pathway.</p></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576924015856\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924015856","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Effect of oxymatrine on neutrophil function based on zebrafish inflammation model and primary neutrophil inflammatory responses
Sophora flavescens Ait. (SFA), an extensively utilized herb for the treatment of fevers, inflammatory disorders, ulcers and skin diseases related to bur, contains oxymatrine (OMT) as its principal active constituent. OMT exerts regulatory effects over inflammation, oxidative stress and apoptosis. Neutrophils, critical regulators of the inflammation response, have not been thoroughly elucidated regarding the protective properties and underlying mechanisms of OMT-mediated anti-inflammation. This study was aim to explore the protective effect of OMT on neutrophils under inflammatory conditions and delve into its potential mechanism. Leveraging the advantages of zebrafish, an animal model with a real-time dynamic observation system, we established an in vivo caudal fin wound model and a copper sulfate induced-inflammation model in zebrafish line Tg (mpx:GFP). The result revealed that OMT significantly attenuated neutrophil migration, upregulated the mRNA expression levels of JNK, casp3, mapk14a, mapkapk2a and map2k1 damaged by zebrafish caudal fin wound model, and downregulated mRNA expression levels of JNK, casp3, mapk14a, mapkapk2a and map2k1 in the copper sulfate injury model. In vitro experiments demonstrated that OMT modulated the chemotaxis response of primary neutrophils from mice, enhanced phagocytosis, reduced oxidative stress and alleviated inflammation level. We hypothesize that the OMT may exert its anti-inflammatory effects by regulating primary neutrophils through the MAPK signaling pathway.
期刊介绍:
International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome.
The subject material appropriate for submission includes:
• Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders.
• Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state.
• Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses.
• Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action.
• Agents that activate genes or modify transcription and translation within the immune response.
• Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active.
• Production, function and regulation of cytokines and their receptors.
• Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.