以 BamA、OmpA 和 Omp34 的高暴露免疫原肽为基础,针对鲍曼不动杆菌设计一种新型混合表位抗原。

IF 4.8 2区 医学 Q2 IMMUNOLOGY International immunopharmacology Pub Date : 2024-09-05 DOI:10.1016/j.intimp.2024.113066
{"title":"以 BamA、OmpA 和 Omp34 的高暴露免疫原肽为基础,针对鲍曼不动杆菌设计一种新型混合表位抗原。","authors":"","doi":"10.1016/j.intimp.2024.113066","DOIUrl":null,"url":null,"abstract":"<div><p><em>Acinetobacter baumannii</em>, is among the highest priority bacteria according to the WHO categorization which necessitate the exploration of alternative strategies such as vaccination. OmpA, BamA, and Omp34 are assigned as appropriate antigens to serve in vaccine development against this pathogen. Experimentally validated exposed epitopes of OmpA and Omp34 along with selected exposed epitopes predicted by an integrative in silico approach were represented by the barrel domain of BamA as a scaffold. Among the 8 external loops of BamA, 5 loops were replaced with selected loops of OmpA and Omp34. The designed antigen was analyzed regarding the physicochemical properties, antigenicity, epitope retrieval, topology, structure, and safety. BamA is a two-domain OMP with a 16-stranded barrel in which L4, L6, and L7 were the longest loops of BamA in order. The designed antigen consisted of 478 amino acids with antigen probability of 0.7793. The novel antigen was a 16-stranded barrel. No identical 8-meric peptides were found in the human proteome against the designed antigen sequence. The designed construct was safe regarding the allergenicity, toxicity, and human proteome reactivity. The designed antigen could develop higher protection against <em>A. baumannii</em> in comparison to either OmpA, BamA, or Omp34 alone.</p></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"In silico design of a novel hybrid epitope-based antigen harboring highly exposed immunogenic peptides of BamA, OmpA, and Omp34 against Acinetobacter baumannii\",\"authors\":\"\",\"doi\":\"10.1016/j.intimp.2024.113066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p><em>Acinetobacter baumannii</em>, is among the highest priority bacteria according to the WHO categorization which necessitate the exploration of alternative strategies such as vaccination. OmpA, BamA, and Omp34 are assigned as appropriate antigens to serve in vaccine development against this pathogen. Experimentally validated exposed epitopes of OmpA and Omp34 along with selected exposed epitopes predicted by an integrative in silico approach were represented by the barrel domain of BamA as a scaffold. Among the 8 external loops of BamA, 5 loops were replaced with selected loops of OmpA and Omp34. The designed antigen was analyzed regarding the physicochemical properties, antigenicity, epitope retrieval, topology, structure, and safety. BamA is a two-domain OMP with a 16-stranded barrel in which L4, L6, and L7 were the longest loops of BamA in order. The designed antigen consisted of 478 amino acids with antigen probability of 0.7793. The novel antigen was a 16-stranded barrel. No identical 8-meric peptides were found in the human proteome against the designed antigen sequence. The designed construct was safe regarding the allergenicity, toxicity, and human proteome reactivity. The designed antigen could develop higher protection against <em>A. baumannii</em> in comparison to either OmpA, BamA, or Omp34 alone.</p></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S156757692401587X\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S156757692401587X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

根据世界卫生组织的分类,鲍曼不动杆菌属于最优先处理的细菌之一,因此有必要探索疫苗接种等替代策略。OmpA、BamA 和 Omp34 被指定为针对这种病原体开发疫苗的合适抗原。经实验验证的 OmpA 和 Omp34 暴露表位,以及通过综合硅学方法预测的选定暴露表位,都以 BamA 的桶状结构域为支架来表示。在 BamA 的 8 个外部环中,有 5 个环被 OmpA 和 Omp34 的选定环所取代。对所设计的抗原进行了理化性质、抗原性、表位检索、拓扑结构、结构和安全性等方面的分析。BamA是一种双链OMP,具有16条链条,其中L4、L6和L7依次为BamA最长的环。设计的抗原由 478 个氨基酸组成,抗原概率为 0.7793。新型抗原是一个 16 链的桶状结构。在人类蛋白质组中没有发现与所设计的抗原序列相同的 8 聚合肽。所设计的构建体在过敏性、毒性和人类蛋白质组反应性方面是安全的。与单独使用 OmpA、BamA 或 Omp34 相比,设计的抗原对鲍曼不动杆菌具有更强的保护作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In silico design of a novel hybrid epitope-based antigen harboring highly exposed immunogenic peptides of BamA, OmpA, and Omp34 against Acinetobacter baumannii

Acinetobacter baumannii, is among the highest priority bacteria according to the WHO categorization which necessitate the exploration of alternative strategies such as vaccination. OmpA, BamA, and Omp34 are assigned as appropriate antigens to serve in vaccine development against this pathogen. Experimentally validated exposed epitopes of OmpA and Omp34 along with selected exposed epitopes predicted by an integrative in silico approach were represented by the barrel domain of BamA as a scaffold. Among the 8 external loops of BamA, 5 loops were replaced with selected loops of OmpA and Omp34. The designed antigen was analyzed regarding the physicochemical properties, antigenicity, epitope retrieval, topology, structure, and safety. BamA is a two-domain OMP with a 16-stranded barrel in which L4, L6, and L7 were the longest loops of BamA in order. The designed antigen consisted of 478 amino acids with antigen probability of 0.7793. The novel antigen was a 16-stranded barrel. No identical 8-meric peptides were found in the human proteome against the designed antigen sequence. The designed construct was safe regarding the allergenicity, toxicity, and human proteome reactivity. The designed antigen could develop higher protection against A. baumannii in comparison to either OmpA, BamA, or Omp34 alone.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
期刊最新文献
Corrigendum to "mTOR aggravated CD4+ T cell pyroptosis by regulating the PPARγ-Nrf2 pathway in sepsis" [Int. Immunopharmacol. 140 (2024) 112822]. Corrigendum to "Role of glucose metabolism reprogramming in keratinocytes in the link between psoriasis and metabolic syndrome" [Int. Immunopharmacol. 139 (2024) 112704]. Isoamericanin A ameliorates neuronal damage and alleviates vascular cognitive impairments by inhibiting oxidative stress through activation of the Nrf2 pathway. Neuroprotective effects of gypenosides on LPS-induced anxiety and depression-like behaviors. Corrigendum to "Artesunate ameliorates ligature-induced periodontitis by attenuating NLRP3 inflammasome-mediated osteoclastogenesis and enhancing osteogenic differentiation" [Int. Immunopharmacol. 123 (2023) 110749].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1