尼古丁通过抑制 CISD3 加重高脂饮食诱发的小鼠非酒精性脂肪肝。

IF 4.8 2区 医学 Q2 IMMUNOLOGY International immunopharmacology Pub Date : 2024-09-05 DOI:10.1016/j.intimp.2024.113067
{"title":"尼古丁通过抑制 CISD3 加重高脂饮食诱发的小鼠非酒精性脂肪肝。","authors":"","doi":"10.1016/j.intimp.2024.113067","DOIUrl":null,"url":null,"abstract":"<div><p>Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease globally. Growing data suggests that smoking plays an important role in the evolution of NAFLD. CDGSH iron sulfur domain 3 (CISD3) regulates critical biological activities. However, its role in nicotine-associated NAFLD and its underlying mechanisms have not been elucidated. Mice were given a high-fat diet for 10 weeks to induce the development of NAFLD. The results revealed that in mice with NAFLD, nicotine treatment resulted in reduced CISD3 expression, leading to mitochondrial dysfunction and impaired β-oxidation. Notably, exacerbation of hepatic steatosis and inflammatory injury was observed. Furthermore, <em>Cisd3</em>-knockout exacerbated lipid accumulation, aggravating oxidative stress and apoptosis. In conclusion, these results contribute to our knowledge of the function of CISD3 in nicotine-associated NAFLD, revealing the possibility of using CISD3 as a potential molecular target for treating NAFLD.</p></div>","PeriodicalId":13859,"journal":{"name":"International immunopharmacology","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nicotine aggravates high-fat diet-induced non-alcoholic fatty liver disease in mice via inhibition of CISD3\",\"authors\":\"\",\"doi\":\"10.1016/j.intimp.2024.113067\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease globally. Growing data suggests that smoking plays an important role in the evolution of NAFLD. CDGSH iron sulfur domain 3 (CISD3) regulates critical biological activities. However, its role in nicotine-associated NAFLD and its underlying mechanisms have not been elucidated. Mice were given a high-fat diet for 10 weeks to induce the development of NAFLD. The results revealed that in mice with NAFLD, nicotine treatment resulted in reduced CISD3 expression, leading to mitochondrial dysfunction and impaired β-oxidation. Notably, exacerbation of hepatic steatosis and inflammatory injury was observed. Furthermore, <em>Cisd3</em>-knockout exacerbated lipid accumulation, aggravating oxidative stress and apoptosis. In conclusion, these results contribute to our knowledge of the function of CISD3 in nicotine-associated NAFLD, revealing the possibility of using CISD3 as a potential molecular target for treating NAFLD.</p></div>\",\"PeriodicalId\":13859,\"journal\":{\"name\":\"International immunopharmacology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International immunopharmacology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567576924015881\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International immunopharmacology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567576924015881","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

非酒精性脂肪肝(NAFLD)是全球发病率最高的慢性肝病。越来越多的数据表明,吸烟在非酒精性脂肪肝的演变过程中起着重要作用。CDGSH 铁硫结构域 3(CISD3)调节着重要的生物活动。然而,它在尼古丁相关的非酒精性脂肪肝中的作用及其内在机制尚未阐明。研究人员对小鼠进行了为期10周的高脂饮食诱导非酒精性脂肪肝的发生。结果发现,在患有非酒精性脂肪肝的小鼠中,尼古丁处理导致CISD3表达减少,从而导致线粒体功能障碍和β氧化作用受损。值得注意的是,观察到肝脏脂肪变性和炎症损伤加剧。此外,Cisd3 基因敲除会加剧脂质积累,加重氧化应激和细胞凋亡。总之,这些结果有助于我们了解CISD3在尼古丁相关非酒精性脂肪肝中的功能,揭示了将CISD3作为治疗非酒精性脂肪肝潜在分子靶点的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nicotine aggravates high-fat diet-induced non-alcoholic fatty liver disease in mice via inhibition of CISD3

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease globally. Growing data suggests that smoking plays an important role in the evolution of NAFLD. CDGSH iron sulfur domain 3 (CISD3) regulates critical biological activities. However, its role in nicotine-associated NAFLD and its underlying mechanisms have not been elucidated. Mice were given a high-fat diet for 10 weeks to induce the development of NAFLD. The results revealed that in mice with NAFLD, nicotine treatment resulted in reduced CISD3 expression, leading to mitochondrial dysfunction and impaired β-oxidation. Notably, exacerbation of hepatic steatosis and inflammatory injury was observed. Furthermore, Cisd3-knockout exacerbated lipid accumulation, aggravating oxidative stress and apoptosis. In conclusion, these results contribute to our knowledge of the function of CISD3 in nicotine-associated NAFLD, revealing the possibility of using CISD3 as a potential molecular target for treating NAFLD.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.40
自引率
3.60%
发文量
935
审稿时长
53 days
期刊介绍: International Immunopharmacology is the primary vehicle for the publication of original research papers pertinent to the overlapping areas of immunology, pharmacology, cytokine biology, immunotherapy, immunopathology and immunotoxicology. Review articles that encompass these subjects are also welcome. The subject material appropriate for submission includes: • Clinical studies employing immunotherapy of any type including the use of: bacterial and chemical agents; thymic hormones, interferon, lymphokines, etc., in transplantation and diseases such as cancer, immunodeficiency, chronic infection and allergic, inflammatory or autoimmune disorders. • Studies on the mechanisms of action of these agents for specific parameters of immune competence as well as the overall clinical state. • Pre-clinical animal studies and in vitro studies on mechanisms of action with immunopotentiators, immunomodulators, immunoadjuvants and other pharmacological agents active on cells participating in immune or allergic responses. • Pharmacological compounds, microbial products and toxicological agents that affect the lymphoid system, and their mechanisms of action. • Agents that activate genes or modify transcription and translation within the immune response. • Substances activated, generated, or released through immunologic or related pathways that are pharmacologically active. • Production, function and regulation of cytokines and their receptors. • Classical pharmacological studies on the effects of chemokines and bioactive factors released during immunological reactions.
期刊最新文献
Corrigendum to "mTOR aggravated CD4+ T cell pyroptosis by regulating the PPARγ-Nrf2 pathway in sepsis" [Int. Immunopharmacol. 140 (2024) 112822]. Corrigendum to "Role of glucose metabolism reprogramming in keratinocytes in the link between psoriasis and metabolic syndrome" [Int. Immunopharmacol. 139 (2024) 112704]. Isoamericanin A ameliorates neuronal damage and alleviates vascular cognitive impairments by inhibiting oxidative stress through activation of the Nrf2 pathway. Neuroprotective effects of gypenosides on LPS-induced anxiety and depression-like behaviors. Corrigendum to "Artesunate ameliorates ligature-induced periodontitis by attenuating NLRP3 inflammasome-mediated osteoclastogenesis and enhancing osteogenic differentiation" [Int. Immunopharmacol. 123 (2023) 110749].
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1