{"title":"创伤性脑损伤的生物能及其对大脑可塑性和功能的长期影响。","authors":"","doi":"10.1016/j.phrs.2024.107389","DOIUrl":null,"url":null,"abstract":"<div><p>Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.</p></div>","PeriodicalId":19918,"journal":{"name":"Pharmacological research","volume":null,"pages":null},"PeriodicalIF":9.1000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1043661824003347/pdfft?md5=363d1b4d55eed5fe951f506efffd6ece&pid=1-s2.0-S1043661824003347-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function\",\"authors\":\"\",\"doi\":\"10.1016/j.phrs.2024.107389\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.</p></div>\",\"PeriodicalId\":19918,\"journal\":{\"name\":\"Pharmacological research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003347/pdfft?md5=363d1b4d55eed5fe951f506efffd6ece&pid=1-s2.0-S1043661824003347-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmacological research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1043661824003347\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHARMACOLOGY & PHARMACY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological research","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1043661824003347","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
摘要
线粒体为细胞的存活和运作提供能量,并有能力影响高度复杂的分子事件。线粒体对维持细胞能量平衡至关重要,而能量平衡决定着神经系统疾病(包括创伤性脑损伤)的病程。线粒体新陈代谢的各个方面(如自噬)会对大脑功能和可塑性产生长期影响。反过来,线粒体生物能又会影响与 DNA 表观遗传修饰相关的分子事件,从而将细胞记忆延长很长时间。线粒体功能障碍会导致氧化应激、炎症和钙失衡等病理表现,威胁大脑的可塑性和功能。因此,以线粒体功能为靶点可能具有减轻创伤性脑损伤后果的巨大潜力。
The bioenergetics of traumatic brain injury and its long-term impact for brain plasticity and function
Mitochondria provide the energy to keep cells alive and functioning and they have the capacity to influence highly complex molecular events. Mitochondria are essential to maintain cellular energy homeostasis that determines the course of neurological disorders, including traumatic brain injury (TBI). Various aspects of mitochondria metabolism such as autophagy can have long-term consequences for brain function and plasticity. In turn, mitochondria bioenergetics can impinge on molecular events associated with epigenetic modifications of DNA, which can extend cellular memory for a long time. Mitochondrial dysfunction leads to pathological manifestations such as oxidative stress, inflammation, and calcium imbalance that threaten brain plasticity and function. Hence, targeting mitochondrial function may have great potential to lessen the outcomes of TBI.
期刊介绍:
Pharmacological Research publishes cutting-edge articles in biomedical sciences to cover a broad range of topics that move the pharmacological field forward. Pharmacological research publishes articles on molecular, biochemical, translational, and clinical research (including clinical trials); it is proud of its rapid publication of accepted papers that comprises a dedicated, fast acceptance and publication track for high profile articles.