Gang Wu, Paola Grassi, Belen Gimeno Molina, David A MacIntyre, Lynne Sykes, Phillip R Bennett, Anne Dell, Stuart M Haslam
{"title":"对有早产风险的妇女的宫颈阴道液进行糖基化分析,发现了作为癌症和病毒糖基化标志的免疫调节表位。","authors":"Gang Wu, Paola Grassi, Belen Gimeno Molina, David A MacIntyre, Lynne Sykes, Phillip R Bennett, Anne Dell, Stuart M Haslam","doi":"10.1038/s41598-024-71950-x","DOIUrl":null,"url":null,"abstract":"<p><p>During pregnancy the immune system needs to maintain immune tolerance of the foetus while also responding to infection, which can cause premature activation of the inflammatory pathways leading to the onset of labour and preterm birth. The vaginal microbiome is an important modifier of preterm birth risk, with Lactobacillus dominance during pregnancy associated with term delivery while high microbial diversity is associated with an increased risk of preterm birth. Glycans on glycoproteins along the lower female reproductive tract are fundamental to microbiota-host interactions and the mediation of inflammatory responses. However, the specific glycan epitopes involved in these processes are not well understood. To address this, we conducted glycomic analyses of cervicovaginal fluid (CVF) from 36 pregnant women at high risk of preterm birth and 4 non-pregnant women. Our analysis of N- and O-glycans revealed a rich CVF glycome. While O-glycans were shown to be the main carriers of ABO blood group epitopes, the main features of N-glycans were the presence of abundant paucimannose and high mannose glycans, and a remarkable diversity of complex bi-, tri-, and tetra-antennary glycans decorated with fucose and sialic acid. We identified immuno-regulatory epitopes, such as Lewis antigens, and found that fucosylation was negatively correlated to pro-inflammatory factors, such as IL-1β, MMP-8, C3a and C5a, while glycans with only sialylated antennae were mainly positively correlated to those. Similarly, paucimannose glycans showed a positive correlation to pro-inflammatory factors. We revealed a high abundance of glycans which have previously been identified as hallmarks of cancer and viral glycosylation, such as Man8 and Man9 high mannose glycans. Although each pregnant woman had a unique glycomic profile, longitudinal studies showed that the main glycosylation features were consistent throughout pregnancy in women who delivered at term, whereas women who experienced extreme preterm birth exhibited sharp changes in the CVF glycome shortly before delivery. These findings shed light on the processes underlying the role of glycosylation in maintaining a healthy vaginal microbiome and associated host immune responses. In addition, these discoveries facilitate our understanding of the lower female reproductive tract which has broad implications for women's health.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379862/pdf/","citationCount":"0","resultStr":"{\"title\":\"Glycomics of cervicovaginal fluid from women at risk of preterm birth reveals immuno-regulatory epitopes that are hallmarks of cancer and viral glycosylation.\",\"authors\":\"Gang Wu, Paola Grassi, Belen Gimeno Molina, David A MacIntyre, Lynne Sykes, Phillip R Bennett, Anne Dell, Stuart M Haslam\",\"doi\":\"10.1038/s41598-024-71950-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>During pregnancy the immune system needs to maintain immune tolerance of the foetus while also responding to infection, which can cause premature activation of the inflammatory pathways leading to the onset of labour and preterm birth. The vaginal microbiome is an important modifier of preterm birth risk, with Lactobacillus dominance during pregnancy associated with term delivery while high microbial diversity is associated with an increased risk of preterm birth. Glycans on glycoproteins along the lower female reproductive tract are fundamental to microbiota-host interactions and the mediation of inflammatory responses. However, the specific glycan epitopes involved in these processes are not well understood. To address this, we conducted glycomic analyses of cervicovaginal fluid (CVF) from 36 pregnant women at high risk of preterm birth and 4 non-pregnant women. Our analysis of N- and O-glycans revealed a rich CVF glycome. While O-glycans were shown to be the main carriers of ABO blood group epitopes, the main features of N-glycans were the presence of abundant paucimannose and high mannose glycans, and a remarkable diversity of complex bi-, tri-, and tetra-antennary glycans decorated with fucose and sialic acid. We identified immuno-regulatory epitopes, such as Lewis antigens, and found that fucosylation was negatively correlated to pro-inflammatory factors, such as IL-1β, MMP-8, C3a and C5a, while glycans with only sialylated antennae were mainly positively correlated to those. Similarly, paucimannose glycans showed a positive correlation to pro-inflammatory factors. We revealed a high abundance of glycans which have previously been identified as hallmarks of cancer and viral glycosylation, such as Man8 and Man9 high mannose glycans. Although each pregnant woman had a unique glycomic profile, longitudinal studies showed that the main glycosylation features were consistent throughout pregnancy in women who delivered at term, whereas women who experienced extreme preterm birth exhibited sharp changes in the CVF glycome shortly before delivery. These findings shed light on the processes underlying the role of glycosylation in maintaining a healthy vaginal microbiome and associated host immune responses. In addition, these discoveries facilitate our understanding of the lower female reproductive tract which has broad implications for women's health.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11379862/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-024-71950-x\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-71950-x","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Glycomics of cervicovaginal fluid from women at risk of preterm birth reveals immuno-regulatory epitopes that are hallmarks of cancer and viral glycosylation.
During pregnancy the immune system needs to maintain immune tolerance of the foetus while also responding to infection, which can cause premature activation of the inflammatory pathways leading to the onset of labour and preterm birth. The vaginal microbiome is an important modifier of preterm birth risk, with Lactobacillus dominance during pregnancy associated with term delivery while high microbial diversity is associated with an increased risk of preterm birth. Glycans on glycoproteins along the lower female reproductive tract are fundamental to microbiota-host interactions and the mediation of inflammatory responses. However, the specific glycan epitopes involved in these processes are not well understood. To address this, we conducted glycomic analyses of cervicovaginal fluid (CVF) from 36 pregnant women at high risk of preterm birth and 4 non-pregnant women. Our analysis of N- and O-glycans revealed a rich CVF glycome. While O-glycans were shown to be the main carriers of ABO blood group epitopes, the main features of N-glycans were the presence of abundant paucimannose and high mannose glycans, and a remarkable diversity of complex bi-, tri-, and tetra-antennary glycans decorated with fucose and sialic acid. We identified immuno-regulatory epitopes, such as Lewis antigens, and found that fucosylation was negatively correlated to pro-inflammatory factors, such as IL-1β, MMP-8, C3a and C5a, while glycans with only sialylated antennae were mainly positively correlated to those. Similarly, paucimannose glycans showed a positive correlation to pro-inflammatory factors. We revealed a high abundance of glycans which have previously been identified as hallmarks of cancer and viral glycosylation, such as Man8 and Man9 high mannose glycans. Although each pregnant woman had a unique glycomic profile, longitudinal studies showed that the main glycosylation features were consistent throughout pregnancy in women who delivered at term, whereas women who experienced extreme preterm birth exhibited sharp changes in the CVF glycome shortly before delivery. These findings shed light on the processes underlying the role of glycosylation in maintaining a healthy vaginal microbiome and associated host immune responses. In addition, these discoveries facilitate our understanding of the lower female reproductive tract which has broad implications for women's health.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.