Zhu Chen , Hongfeng Wu , Yifu Wang , Yunjia Rao , Jin Yan , Bin Ran , Qin Zeng , Xiao Yang , Jun Cao , Huan Cao , Xiangdong Zhu , Xingdong Zhang
{"title":"利用对 MMP-2 敏感的 nHA/GNE 共包水凝胶调节免疫抑制微环境,加强黑色素瘤治疗。","authors":"Zhu Chen , Hongfeng Wu , Yifu Wang , Yunjia Rao , Jin Yan , Bin Ran , Qin Zeng , Xiao Yang , Jun Cao , Huan Cao , Xiangdong Zhu , Xingdong Zhang","doi":"10.1016/j.actbio.2024.08.055","DOIUrl":null,"url":null,"abstract":"<div><div>The immunosuppressive tumor microenvironment, such as lactic acid and matrix metalloproteinases (MMPs) overexpression, has been well confirmed to be adverse for tumor therapy. In current study, a tumor microenvironment modulatory hydrogel was successfully developed to treat melanoma by taking advantage of the synergistic effects of nano-hydroxyapatite (nHA) with well-documented selective anti-tumor action, lactate dehydrogenase A inhibitor (R)-GNE-140 (GNE), and matrix metalloproteinase-2 (MMP-2) sensitive peptide. The hydrogel was acquired by the reaction of 4-arm-polyethylene glycol-maleic anhydride (4-arm-PEG-MAL) and MMP-2 sensitive peptide (CC-14), in which nHA and GNE were co-encapsulated physically. The <em>in vitro</em> degradation tests confirmed the accelerated release of nHA and GNE from the hydrogel under less-acidic (pH 6.8) and MMP-2 containing conditions compared to those neutral or without MMP-2 conditions, demonstrating the pH and MMP-2 responsive properties of as-prepared hydrogel. Findings from <em>in vitro</em> cell experiments revealed that the hydrogel could stop the proliferation of melanoma cells by stacking cell cycle <em>via</em> lactic acid metabolic dysregulation and boosting cell apoptosis <em>via</em> nHA direct killing effect. Moreover, after hydrogel treatment, the rate of migration and aggressiveness of melanoma cells both reduced significantly. An <em>in vivo</em> anti-melanoma study showed that the hydrogel could inhibit tumor growth significantly and result in more CD8<sup>+</sup> T cells and antigen-presenting cells but less T<sub>reg</sub> cells infiltration, ultimately leading to an enhanced therapeutic efficacy. As thus, the fabricated hydrogel demonstrated great promise for treating melanoma and could be a new potent strategy for efficient melanoma therapy.</div></div><div><h3>Statement of significance</h3><div>Nano-hydroxyapatite (nHA) has the capability of selectively killing cancer cells. The study reported a tumor microenvironment (TME) modulatory hydrogel with the goal of enhancing melanoma therapy efficacy by combining nHA administration with immunosuppressive microenvironment modulation. The hydrogel demonstrated pH and MMP-2 sensitivity. Hence, controlled release of nHA and lactate dehydrogenase A inhibitor (GNE) could be observed, and <em>in situ</em> MMP-2 consumption at the tumor site occurred. The hydrogel effectively inhibited the growth of melanoma cells. Furthermore, hydrogel increased the production of CD8<sup>+</sup> T cells and antigen-presenting cells while decreasing the infiltration of T<sub>reg</sub> cells at the tumor site. This could transform the initial “cold” tumor into a “hot” tumor, ultimately resulting in an enhanced therapeutic effect.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"188 ","pages":"Pages 79-92"},"PeriodicalIF":9.4000,"publicationDate":"2024-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing melanoma therapy by modulating the immunosuppressive microenvironment with an MMP-2 sensitive and nHA/GNE co-encapsulated hydrogel\",\"authors\":\"Zhu Chen , Hongfeng Wu , Yifu Wang , Yunjia Rao , Jin Yan , Bin Ran , Qin Zeng , Xiao Yang , Jun Cao , Huan Cao , Xiangdong Zhu , Xingdong Zhang\",\"doi\":\"10.1016/j.actbio.2024.08.055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The immunosuppressive tumor microenvironment, such as lactic acid and matrix metalloproteinases (MMPs) overexpression, has been well confirmed to be adverse for tumor therapy. In current study, a tumor microenvironment modulatory hydrogel was successfully developed to treat melanoma by taking advantage of the synergistic effects of nano-hydroxyapatite (nHA) with well-documented selective anti-tumor action, lactate dehydrogenase A inhibitor (R)-GNE-140 (GNE), and matrix metalloproteinase-2 (MMP-2) sensitive peptide. The hydrogel was acquired by the reaction of 4-arm-polyethylene glycol-maleic anhydride (4-arm-PEG-MAL) and MMP-2 sensitive peptide (CC-14), in which nHA and GNE were co-encapsulated physically. The <em>in vitro</em> degradation tests confirmed the accelerated release of nHA and GNE from the hydrogel under less-acidic (pH 6.8) and MMP-2 containing conditions compared to those neutral or without MMP-2 conditions, demonstrating the pH and MMP-2 responsive properties of as-prepared hydrogel. Findings from <em>in vitro</em> cell experiments revealed that the hydrogel could stop the proliferation of melanoma cells by stacking cell cycle <em>via</em> lactic acid metabolic dysregulation and boosting cell apoptosis <em>via</em> nHA direct killing effect. Moreover, after hydrogel treatment, the rate of migration and aggressiveness of melanoma cells both reduced significantly. An <em>in vivo</em> anti-melanoma study showed that the hydrogel could inhibit tumor growth significantly and result in more CD8<sup>+</sup> T cells and antigen-presenting cells but less T<sub>reg</sub> cells infiltration, ultimately leading to an enhanced therapeutic efficacy. As thus, the fabricated hydrogel demonstrated great promise for treating melanoma and could be a new potent strategy for efficient melanoma therapy.</div></div><div><h3>Statement of significance</h3><div>Nano-hydroxyapatite (nHA) has the capability of selectively killing cancer cells. The study reported a tumor microenvironment (TME) modulatory hydrogel with the goal of enhancing melanoma therapy efficacy by combining nHA administration with immunosuppressive microenvironment modulation. The hydrogel demonstrated pH and MMP-2 sensitivity. Hence, controlled release of nHA and lactate dehydrogenase A inhibitor (GNE) could be observed, and <em>in situ</em> MMP-2 consumption at the tumor site occurred. The hydrogel effectively inhibited the growth of melanoma cells. Furthermore, hydrogel increased the production of CD8<sup>+</sup> T cells and antigen-presenting cells while decreasing the infiltration of T<sub>reg</sub> cells at the tumor site. This could transform the initial “cold” tumor into a “hot” tumor, ultimately resulting in an enhanced therapeutic effect.</div></div>\",\"PeriodicalId\":237,\"journal\":{\"name\":\"Acta Biomaterialia\",\"volume\":\"188 \",\"pages\":\"Pages 79-92\"},\"PeriodicalIF\":9.4000,\"publicationDate\":\"2024-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biomaterialia\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1742706124005075\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706124005075","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Enhancing melanoma therapy by modulating the immunosuppressive microenvironment with an MMP-2 sensitive and nHA/GNE co-encapsulated hydrogel
The immunosuppressive tumor microenvironment, such as lactic acid and matrix metalloproteinases (MMPs) overexpression, has been well confirmed to be adverse for tumor therapy. In current study, a tumor microenvironment modulatory hydrogel was successfully developed to treat melanoma by taking advantage of the synergistic effects of nano-hydroxyapatite (nHA) with well-documented selective anti-tumor action, lactate dehydrogenase A inhibitor (R)-GNE-140 (GNE), and matrix metalloproteinase-2 (MMP-2) sensitive peptide. The hydrogel was acquired by the reaction of 4-arm-polyethylene glycol-maleic anhydride (4-arm-PEG-MAL) and MMP-2 sensitive peptide (CC-14), in which nHA and GNE were co-encapsulated physically. The in vitro degradation tests confirmed the accelerated release of nHA and GNE from the hydrogel under less-acidic (pH 6.8) and MMP-2 containing conditions compared to those neutral or without MMP-2 conditions, demonstrating the pH and MMP-2 responsive properties of as-prepared hydrogel. Findings from in vitro cell experiments revealed that the hydrogel could stop the proliferation of melanoma cells by stacking cell cycle via lactic acid metabolic dysregulation and boosting cell apoptosis via nHA direct killing effect. Moreover, after hydrogel treatment, the rate of migration and aggressiveness of melanoma cells both reduced significantly. An in vivo anti-melanoma study showed that the hydrogel could inhibit tumor growth significantly and result in more CD8+ T cells and antigen-presenting cells but less Treg cells infiltration, ultimately leading to an enhanced therapeutic efficacy. As thus, the fabricated hydrogel demonstrated great promise for treating melanoma and could be a new potent strategy for efficient melanoma therapy.
Statement of significance
Nano-hydroxyapatite (nHA) has the capability of selectively killing cancer cells. The study reported a tumor microenvironment (TME) modulatory hydrogel with the goal of enhancing melanoma therapy efficacy by combining nHA administration with immunosuppressive microenvironment modulation. The hydrogel demonstrated pH and MMP-2 sensitivity. Hence, controlled release of nHA and lactate dehydrogenase A inhibitor (GNE) could be observed, and in situ MMP-2 consumption at the tumor site occurred. The hydrogel effectively inhibited the growth of melanoma cells. Furthermore, hydrogel increased the production of CD8+ T cells and antigen-presenting cells while decreasing the infiltration of Treg cells at the tumor site. This could transform the initial “cold” tumor into a “hot” tumor, ultimately resulting in an enhanced therapeutic effect.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.