Gonzalo Gavilán-Acuna , Nicholas C. Coops , Piotr Tompalski , Pablo Mena-Quijada , Andrés Varhola , Dominik Roeser , Guillermo F. Olmedo
{"title":"利用 ALS 和卫星数据确定人工林的年叶面积指数变化和体积增长特征","authors":"Gonzalo Gavilán-Acuna , Nicholas C. Coops , Piotr Tompalski , Pablo Mena-Quijada , Andrés Varhola , Dominik Roeser , Guillermo F. Olmedo","doi":"10.1016/j.srs.2024.100159","DOIUrl":null,"url":null,"abstract":"<div><p>While Leaf Area Index (LAI) is critical for understanding forest canopy, photosynthesis and forest growth, traditional field-based LAI measurements are laborious and costly. Remote sensing offers a practical alternative for extensive assessments. Satellite imagery provides broad-scale, long-term monitoring; however, may lack detail needed to guide specific forest management actions. Conversely, Airborne Laser Scanning (ALS) provides accurate LAI estimates at fine spatial detail but is limited by cost and temporal monitoring constraints. Combining ALS data with satellite observations could enhance plantation management decisions by balancing extensive coverage with detailed observations. This study explores the integration of ALS and satellite remote sensing as a comprehensive alternative for assessing LAI and stand volume growth rate (m<sup>3</sup>/ha/year) in operational <em>Pinus radiata</em> plantations in central-south Chile. Our approach comprised four major steps. First, we applied the Beer-Lambert law using ALS vertical profiles to estimate LAI across a forest plantation (LAI<sub>ALS</sub>). We found that ALS accurately estimated LAI across 121 plots (R<sup>2</sup> = 0.82 and RMSE = 0.51). Second, we built a simple linear regression to link LAI<sub>ALS</sub> with the Normalized Difference Moisture Index (NDMI) derived from surface reflectance information from the Landsat/Sentinel-2 satellites, resulting in an R<sup>2</sup> of 0.53 and an RMSE of 1.17. This step showed a higher correlation with satellite data compared to using only ground-based LAI estimates (R<sup>2</sup> = 0.38; RMSE = 1.18). Third, we transformed biweekly NDMI time series to LAI, then derived peak annual LAI as an indicator of mean annual increment (MAI) (R<sup>2</sup> = 0.51; RMSE = 5.27 m³/ha/year). This allowed us to characterize stand growth and LAI on a yearly wall-to-wall basis. Throughout the modelling steps, we incorporated error propagation, allowing final estimates to be error bounded. This integrated approach serves as a tool for identifying and visualizing growth irregularities, guiding adaptive management strategies to maintain or enhance stand productivity over time.</p></div>","PeriodicalId":101147,"journal":{"name":"Science of Remote Sensing","volume":"10 ","pages":"Article 100159"},"PeriodicalIF":5.7000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666017224000439/pdfft?md5=490f7a068eafcc92083ee3697de5608a&pid=1-s2.0-S2666017224000439-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Characterizing annual leaf area index changes and volume growth using ALS and satellite data in forest plantations\",\"authors\":\"Gonzalo Gavilán-Acuna , Nicholas C. Coops , Piotr Tompalski , Pablo Mena-Quijada , Andrés Varhola , Dominik Roeser , Guillermo F. Olmedo\",\"doi\":\"10.1016/j.srs.2024.100159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>While Leaf Area Index (LAI) is critical for understanding forest canopy, photosynthesis and forest growth, traditional field-based LAI measurements are laborious and costly. Remote sensing offers a practical alternative for extensive assessments. Satellite imagery provides broad-scale, long-term monitoring; however, may lack detail needed to guide specific forest management actions. Conversely, Airborne Laser Scanning (ALS) provides accurate LAI estimates at fine spatial detail but is limited by cost and temporal monitoring constraints. Combining ALS data with satellite observations could enhance plantation management decisions by balancing extensive coverage with detailed observations. This study explores the integration of ALS and satellite remote sensing as a comprehensive alternative for assessing LAI and stand volume growth rate (m<sup>3</sup>/ha/year) in operational <em>Pinus radiata</em> plantations in central-south Chile. Our approach comprised four major steps. First, we applied the Beer-Lambert law using ALS vertical profiles to estimate LAI across a forest plantation (LAI<sub>ALS</sub>). We found that ALS accurately estimated LAI across 121 plots (R<sup>2</sup> = 0.82 and RMSE = 0.51). Second, we built a simple linear regression to link LAI<sub>ALS</sub> with the Normalized Difference Moisture Index (NDMI) derived from surface reflectance information from the Landsat/Sentinel-2 satellites, resulting in an R<sup>2</sup> of 0.53 and an RMSE of 1.17. This step showed a higher correlation with satellite data compared to using only ground-based LAI estimates (R<sup>2</sup> = 0.38; RMSE = 1.18). Third, we transformed biweekly NDMI time series to LAI, then derived peak annual LAI as an indicator of mean annual increment (MAI) (R<sup>2</sup> = 0.51; RMSE = 5.27 m³/ha/year). This allowed us to characterize stand growth and LAI on a yearly wall-to-wall basis. Throughout the modelling steps, we incorporated error propagation, allowing final estimates to be error bounded. This integrated approach serves as a tool for identifying and visualizing growth irregularities, guiding adaptive management strategies to maintain or enhance stand productivity over time.</p></div>\",\"PeriodicalId\":101147,\"journal\":{\"name\":\"Science of Remote Sensing\",\"volume\":\"10 \",\"pages\":\"Article 100159\"},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2666017224000439/pdfft?md5=490f7a068eafcc92083ee3697de5608a&pid=1-s2.0-S2666017224000439-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science of Remote Sensing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666017224000439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science of Remote Sensing","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666017224000439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
叶面积指数(LAI)对于了解森林冠层、光合作用和森林生长至关重要,但传统的实地叶面积指数测量既费力又昂贵。遥感技术为广泛评估提供了一种实用的替代方法。卫星图像可提供大范围的长期监测,但可能缺乏指导具体森林管理行动所需的细节。与此相反,机载激光扫描(ALS)可提供精确的 LAI 估计值,但受到成本和时间监测的限制。将 ALS 数据与卫星观测数据相结合,可以在广泛的覆盖范围与详细的观测数据之间取得平衡,从而加强人工林管理决策。本研究探讨了如何将 ALS 与卫星遥感结合起来,作为评估智利中南部辐射松人工林的 LAI 和林木体积增长率(立方米/公顷/年)的综合替代方法。我们的方法包括四个主要步骤。首先,我们利用 ALS 垂直剖面应用比尔-朗伯定律估算人工林的 LAI(LAIALS)。我们发现,ALS 能准确估算 121 个地块的 LAI(R2 = 0.82,RMSE = 0.51)。其次,我们建立了一个简单的线性回归,将 LAIALS 与根据 Landsat/Sentinel-2 卫星表面反射率信息得出的归一化差异水分指数 (NDMI) 联系起来,结果 R2 为 0.53,RMSE 为 1.17。与仅使用地面 LAI 估计值(R2 = 0.38;RMSE = 1.18)相比,这一步骤显示出与卫星数据更高的相关性。第三,我们将双周 NDMI 时间序列转换为 LAI,然后得出年 LAI 峰值,作为年平均增量 (MAI) 的指标(R2 = 0.51;RMSE = 5.27 m³/ha/年)。这样,我们就能以每年墙到墙的方式来描述林分生长和 LAI 的特征。在整个建模步骤中,我们纳入了误差传播,从而使最终估算结果具有误差约束。这种综合方法可作为一种工具,用于识别和直观显示生长的不规则性,从而指导适应性管理策略,随着时间的推移保持或提高林分生产力。
Characterizing annual leaf area index changes and volume growth using ALS and satellite data in forest plantations
While Leaf Area Index (LAI) is critical for understanding forest canopy, photosynthesis and forest growth, traditional field-based LAI measurements are laborious and costly. Remote sensing offers a practical alternative for extensive assessments. Satellite imagery provides broad-scale, long-term monitoring; however, may lack detail needed to guide specific forest management actions. Conversely, Airborne Laser Scanning (ALS) provides accurate LAI estimates at fine spatial detail but is limited by cost and temporal monitoring constraints. Combining ALS data with satellite observations could enhance plantation management decisions by balancing extensive coverage with detailed observations. This study explores the integration of ALS and satellite remote sensing as a comprehensive alternative for assessing LAI and stand volume growth rate (m3/ha/year) in operational Pinus radiata plantations in central-south Chile. Our approach comprised four major steps. First, we applied the Beer-Lambert law using ALS vertical profiles to estimate LAI across a forest plantation (LAIALS). We found that ALS accurately estimated LAI across 121 plots (R2 = 0.82 and RMSE = 0.51). Second, we built a simple linear regression to link LAIALS with the Normalized Difference Moisture Index (NDMI) derived from surface reflectance information from the Landsat/Sentinel-2 satellites, resulting in an R2 of 0.53 and an RMSE of 1.17. This step showed a higher correlation with satellite data compared to using only ground-based LAI estimates (R2 = 0.38; RMSE = 1.18). Third, we transformed biweekly NDMI time series to LAI, then derived peak annual LAI as an indicator of mean annual increment (MAI) (R2 = 0.51; RMSE = 5.27 m³/ha/year). This allowed us to characterize stand growth and LAI on a yearly wall-to-wall basis. Throughout the modelling steps, we incorporated error propagation, allowing final estimates to be error bounded. This integrated approach serves as a tool for identifying and visualizing growth irregularities, guiding adaptive management strategies to maintain or enhance stand productivity over time.