往复式压缩机的故障分类:机器学习与深度学习方法的比较⁎

Q3 Engineering IFAC-PapersOnLine Pub Date : 2024-01-01 DOI:10.1016/j.ifacol.2024.08.066
René-Vinicio Sánchez , Jean-Carlo Macancela , Diego Cabrera , Mariela Cerrada
{"title":"往复式压缩机的故障分类:机器学习与深度学习方法的比较⁎","authors":"René-Vinicio Sánchez ,&nbsp;Jean-Carlo Macancela ,&nbsp;Diego Cabrera ,&nbsp;Mariela Cerrada","doi":"10.1016/j.ifacol.2024.08.066","DOIUrl":null,"url":null,"abstract":"<div><p>This study compares methodologies for fault classification in reciprocating compressors, focusing on traditional Machine Learning (ML) with classical feature extraction processes and one-dimensional Convolutional Neural Networks (1D-CNN) in Deep Learning (DL). Both techniques demonstrated viability by employing a dataset of compressor vibration signals encompassing ten fault classes. While ML achieved a classification accuracy of 86%, DL reached 90.709%, highlighting its superior learning and generalization abilities, although with longer training times. These findings suggest that, despite ML being effective when relevant prior knowledge is available, DL, particularly with 1D-CNN, offers enhanced fault classification performance for this study case at the expense of additional processing resources.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 8","pages":"Pages 157-161"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324007833/pdf?md5=e93773c2764fc0480f7a78a8a962791f&pid=1-s2.0-S2405896324007833-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Fault Classification in Reciprocating Compressors: A Comparison of Machine Learning and Deep Learning Approaches⁎\",\"authors\":\"René-Vinicio Sánchez ,&nbsp;Jean-Carlo Macancela ,&nbsp;Diego Cabrera ,&nbsp;Mariela Cerrada\",\"doi\":\"10.1016/j.ifacol.2024.08.066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study compares methodologies for fault classification in reciprocating compressors, focusing on traditional Machine Learning (ML) with classical feature extraction processes and one-dimensional Convolutional Neural Networks (1D-CNN) in Deep Learning (DL). Both techniques demonstrated viability by employing a dataset of compressor vibration signals encompassing ten fault classes. While ML achieved a classification accuracy of 86%, DL reached 90.709%, highlighting its superior learning and generalization abilities, although with longer training times. These findings suggest that, despite ML being effective when relevant prior knowledge is available, DL, particularly with 1D-CNN, offers enhanced fault classification performance for this study case at the expense of additional processing resources.</p></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 8\",\"pages\":\"Pages 157-161\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324007833/pdf?md5=e93773c2764fc0480f7a78a8a962791f&pid=1-s2.0-S2405896324007833-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324007833\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324007833","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本研究比较了往复式压缩机的故障分类方法,重点是传统机器学习(ML)中的经典特征提取过程和深度学习(DL)中的一维卷积神经网络(1D-CNN)。通过使用包含十个故障类别的压缩机振动信号数据集,这两种技术都证明了其可行性。ML 的分类准确率达到了 86%,而 DL 则达到了 90.709%,突显了其卓越的学习和泛化能力,尽管训练时间更长。这些研究结果表明,尽管 ML 在相关先验知识可用的情况下非常有效,但 DL,尤其是使用 1D-CNN 的 DL,在本研究案例中提供了更高的故障分类性能,但却以额外的处理资源为代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault Classification in Reciprocating Compressors: A Comparison of Machine Learning and Deep Learning Approaches⁎

This study compares methodologies for fault classification in reciprocating compressors, focusing on traditional Machine Learning (ML) with classical feature extraction processes and one-dimensional Convolutional Neural Networks (1D-CNN) in Deep Learning (DL). Both techniques demonstrated viability by employing a dataset of compressor vibration signals encompassing ten fault classes. While ML achieved a classification accuracy of 86%, DL reached 90.709%, highlighting its superior learning and generalization abilities, although with longer training times. These findings suggest that, despite ML being effective when relevant prior knowledge is available, DL, particularly with 1D-CNN, offers enhanced fault classification performance for this study case at the expense of additional processing resources.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IFAC-PapersOnLine
IFAC-PapersOnLine Engineering-Control and Systems Engineering
CiteScore
1.70
自引率
0.00%
发文量
1122
期刊介绍: All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.
期刊最新文献
Torque-Minimizing Control Allocation for Overactuated Quadrupedal Locomotion Mesh Refinement with Early Termination for Dynamic Feasibility Problems Prediction of Placenta Previa from Serial Reading of Serum Human Chorionic Gonadotropin Late in the First Half of Pregnancy. Improving Kernel-Based Nonasymptotic Simultaneous Confidence Bands Sample Complexity of the Sign-Perturbed Sums Identification Method: Scalar Case*
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1