{"title":"预测印刷电路板组件的缺陷率:实现零缺陷制造和零维护战略","authors":"E. Miedema , H. Kortman , C. Emmanouilidis","doi":"10.1016/j.ifacol.2024.08.056","DOIUrl":null,"url":null,"abstract":"<div><p>Printed Circuit Boards (PCB) manufacturing is a critical part of volatile supply chains for a wide variety of products and high value assets. PCBs are expected to exhibit zero defects and be subject to zero-maintenance. However low the defect rates, defects are highly disruptive and costly. Such defects can be introduced by a multitude of reasons, including faulty parts or sub-standard manufacturing processes. While sophisticated and dedicated quality inspection systems are typically in place in production environments, they still leave room for erroneous quality control outcomes. Besides in-line or post-production quality inspection, manufacturers can exploit experience gained from historical records of past inspections to predict future defect rates. This paper presents the development of a predictive quality modelling approach, which capitalises on such historical data and domain knowledge, to predict defect rates in new production orders. Employing appropriate encoding of knowledge through data pre-processing and applying regression type of machine learning, the proposed approach is validated on a real case study from an electronics manufacturing company. The developed approach can positively contribute towards optimising consequent maintenance and warranty services and become part of a zero-defect production strategy.</p></div>","PeriodicalId":37894,"journal":{"name":"IFAC-PapersOnLine","volume":"58 8","pages":"Pages 91-96"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405896324007730/pdf?md5=644474ad7953b5c46fe98c9f8da1ce10&pid=1-s2.0-S2405896324007730-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Predicting Defect Rates of Printed Circuit Board Assemblies: Towards Zero Defect Manufacturing and Zero-Maintenance Strategies\",\"authors\":\"E. Miedema , H. Kortman , C. Emmanouilidis\",\"doi\":\"10.1016/j.ifacol.2024.08.056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Printed Circuit Boards (PCB) manufacturing is a critical part of volatile supply chains for a wide variety of products and high value assets. PCBs are expected to exhibit zero defects and be subject to zero-maintenance. However low the defect rates, defects are highly disruptive and costly. Such defects can be introduced by a multitude of reasons, including faulty parts or sub-standard manufacturing processes. While sophisticated and dedicated quality inspection systems are typically in place in production environments, they still leave room for erroneous quality control outcomes. Besides in-line or post-production quality inspection, manufacturers can exploit experience gained from historical records of past inspections to predict future defect rates. This paper presents the development of a predictive quality modelling approach, which capitalises on such historical data and domain knowledge, to predict defect rates in new production orders. Employing appropriate encoding of knowledge through data pre-processing and applying regression type of machine learning, the proposed approach is validated on a real case study from an electronics manufacturing company. The developed approach can positively contribute towards optimising consequent maintenance and warranty services and become part of a zero-defect production strategy.</p></div>\",\"PeriodicalId\":37894,\"journal\":{\"name\":\"IFAC-PapersOnLine\",\"volume\":\"58 8\",\"pages\":\"Pages 91-96\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2405896324007730/pdf?md5=644474ad7953b5c46fe98c9f8da1ce10&pid=1-s2.0-S2405896324007730-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IFAC-PapersOnLine\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405896324007730\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IFAC-PapersOnLine","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405896324007730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Predicting Defect Rates of Printed Circuit Board Assemblies: Towards Zero Defect Manufacturing and Zero-Maintenance Strategies
Printed Circuit Boards (PCB) manufacturing is a critical part of volatile supply chains for a wide variety of products and high value assets. PCBs are expected to exhibit zero defects and be subject to zero-maintenance. However low the defect rates, defects are highly disruptive and costly. Such defects can be introduced by a multitude of reasons, including faulty parts or sub-standard manufacturing processes. While sophisticated and dedicated quality inspection systems are typically in place in production environments, they still leave room for erroneous quality control outcomes. Besides in-line or post-production quality inspection, manufacturers can exploit experience gained from historical records of past inspections to predict future defect rates. This paper presents the development of a predictive quality modelling approach, which capitalises on such historical data and domain knowledge, to predict defect rates in new production orders. Employing appropriate encoding of knowledge through data pre-processing and applying regression type of machine learning, the proposed approach is validated on a real case study from an electronics manufacturing company. The developed approach can positively contribute towards optimising consequent maintenance and warranty services and become part of a zero-defect production strategy.
期刊介绍:
All papers from IFAC meetings are published, in partnership with Elsevier, the IFAC Publisher, in theIFAC-PapersOnLine proceedings series hosted at the ScienceDirect web service. This series includes papers previously published in the IFAC website.The main features of the IFAC-PapersOnLine series are: -Online archive including papers from IFAC Symposia, Congresses, Conferences, and most Workshops. -All papers accepted at the meeting are published in PDF format - searchable and citable. -All papers published on the web site can be cited using the IFAC PapersOnLine ISSN and the individual paper DOI (Digital Object Identifier). The site is Open Access in nature - no charge is made to individuals for reading or downloading. Copyright of all papers belongs to IFAC and must be referenced if derivative journal papers are produced from the conference papers. All papers published in IFAC-PapersOnLine have undergone a peer review selection process according to the IFAC rules.